Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.705
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(6): 1340-1355.e15, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30799037

RESUMEN

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.


Asunto(s)
Candida albicans/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/patogenicidad , Candida albicans/patogenicidad , Reacciones Cruzadas/inmunología , Fibrosis Quística/inmunología , Fibrosis Quística/microbiología , Humanos , Inmunidad , Inmunidad Heteróloga/inmunología , Células Th17/fisiología
2.
Immunity ; 56(2): 320-335.e9, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36693372

RESUMEN

Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.


Asunto(s)
Inmunidad Innata , Neumonía , Humanos , Dopamina/metabolismo , Linfocitos , Pulmón/metabolismo , Neumonía/metabolismo , Inflamación/metabolismo , Interleucina-33/metabolismo
3.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36323312

RESUMEN

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Ratones , Animales , Interleucina-4/metabolismo , Lipopolisacáridos/metabolismo , Ligandos , Epigenómica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigénesis Genética , FN-kappa B/metabolismo
4.
Immunity ; 54(4): 617-631, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852829

RESUMEN

Immunity in the human respiratory tract is provided by a diverse range of tissue-resident cells, including specialized epithelial and macrophage populations and a network of innate and innate-like lymphocytes, such as natural killer cells, innate lymphoid cells, and invariant T cells. Lung-resident memory T and B cells contribute to this network following initial exposure to antigenic stimuli. This review explores how advances in the study of human immunology have shaped our understanding of this resident immune network and its response to two of the most commonly encountered inflammatory stimuli in the airways: viruses and allergens. It discusses the many ways in which pathogenic infection and allergic inflammation mirror each other, highlighting the key checkpoints at which they diverge and how this can result in a lifetime of allergic exacerbation versus protective anti-viral immunity.


Asunto(s)
Alérgenos/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Pulmón/inmunología , Infecciones del Sistema Respiratorio/inmunología , Virosis/inmunología , Animales , Humanos , Inflamación/virología , Pulmón/virología , Linfocitos/inmunología , Infecciones del Sistema Respiratorio/virología
5.
Immunity ; 54(8): 1715-1727.e7, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34283971

RESUMEN

Allergic airway inflammation is driven by type-2 CD4+ T cell inflammatory responses. We uncover an immunoregulatory role for the nucleotide release channel, Panx1, in T cell crosstalk during airway disease. Inverse correlations between Panx1 and asthmatics and our mouse models revealed the necessity, specificity, and sufficiency of Panx1 in T cells to restrict inflammation. Global Panx1-/- mice experienced exacerbated airway inflammation, and T-cell-specific deletion phenocopied Panx1-/- mice. A transgenic designed to re-express Panx1 in T cells reversed disease severity in global Panx1-/- mice. Panx1 activation occurred in pro-inflammatory T effector (Teff) and inhibitory T regulatory (Treg) cells and mediated the extracellular-nucleotide-based Treg-Teff crosstalk required for suppression of Teff cell proliferation. Mechanistic studies identified a Salt-inducible kinase-dependent phosphorylation of Panx1 serine 205 important for channel activation. A genetically targeted mouse expressing non-phosphorylatable Panx1S205A phenocopied the exacerbated inflammation in Panx1-/- mice. These data identify Panx1-dependent Treg:Teff cell communication in restricting airway disease.


Asunto(s)
Asma/inmunología , Comunicación Celular/inmunología , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Línea Celular , Proliferación Celular/fisiología , Conexinas/genética , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Sistema Respiratorio/inmunología
6.
Immunity ; 52(4): 620-634.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32268121

RESUMEN

Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.


Asunto(s)
Alérgenos/administración & dosificación , Asma/dietoterapia , Diacilglicerol O-Acetiltransferasa/inmunología , Dieta Cetogénica/métodos , Interleucina-33/inmunología , Gotas Lipídicas/metabolismo , Subgrupos de Linfocitos T/inmunología , Alternaria/química , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/patología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Citocinas/administración & dosificación , Diacilglicerol O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Glucosa/inmunología , Glucosa/metabolismo , Inmunidad Innata , Interleucina-33/administración & dosificación , Interleucina-33/genética , Interleucinas/administración & dosificación , Gotas Lipídicas/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/inmunología , Papaína/administración & dosificación , Fosfolípidos/inmunología , Fosfolípidos/metabolismo , Cultivo Primario de Células , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Linfopoyetina del Estroma Tímico
7.
Immunity ; 51(4): 709-723.e6, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604686

RESUMEN

Neuroimmune interactions have emerged as critical modulators of allergic inflammation, and type 2 innate lymphoid cells (ILC2s) are an important cell type for mediating these interactions. Here, we show that ILC2s expressed both the neuropeptide calcitonin gene-related peptide (CGRP) and its receptor. CGRP potently inhibited alarmin-driven type 2 cytokine production and proliferation by lung ILC2s both in vitro and in vivo. CGRP induced marked changes in ILC2 expression programs in vivo and in vitro, attenuating alarmin-driven proliferative and effector responses. A distinct subset of ILCs scored highly for a CGRP-specific gene signature after in vivo alarmin stimulation, suggesting CGRP regulated this response. Finally, we observed increased ILC2 proliferation and type 2 cytokine production as well as exaggerated responses to alarmins in mice lacking the CGRP receptor. Together, these data indicate that endogenous CGRP is a critical negative regulator of ILC2 responses in vivo.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Linfocitos/fisiología , Neuropéptidos/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Alarminas/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Proliferación Celular , Células Cultivadas , Retroalimentación Fisiológica , Inmunidad Innata , Interleucina-33/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroinmunomodulación , Neuropéptidos/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Transducción de Señal , Células Th2/inmunología
8.
Proc Natl Acad Sci U S A ; 120(36): e2215941120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639581

RESUMEN

Group 2 innate lymphoid cells (ILC2s) are critical for the immune response against parasite infection and tissue homeostasis and involved in the pathogenesis of allergy and inflammatory diseases. Although multiple molecules positively regulating ILC2 development and activation have been extensively investigated, the factors limiting their population size and response remain poorly studied. Here, we found that CD45, a membrane-bound tyrosine phosphatase essential for T cell development, negatively regulated ILC2s in a cell-intrinsic manner. ILC2s in CD45-deficient mice exhibited enhanced proliferation and maturation in the bone marrow and hyperactivated phenotypes in the lung with high glycolytic capacity. Furthermore, CD45 signaling suppressed the type 2 inflammatory response by lung ILC2s and alleviated airway inflammation and pulmonary fibrosis. Finally, the interaction with galectin-9 influenced CD45 signaling in ILC2s. These results demonstrate that CD45 is a cell-intrinsic negative regulator of ILC2s and prevents lung inflammation and fibrosis via ILC2s.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/prevención & control , Inmunidad Innata , Linfocitos , Inflamación , Transducción de Señal
9.
Immunity ; 44(6): 1337-49, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27317260

RESUMEN

Distinct metabolic programs support the differentiation of CD4(+) T cells into separate functional subsets. In this study, we investigated metabolic mechanisms underlying the differentiation of IL-9-producing CD4(+) T cells (Th9) in allergic airway inflammation and cancerous tumors. We found that histone deacetylase SIRT1 negatively regulated Th9 cell differentiation. A deficiency of SIRT1 induced by either conditional deletion in mouse CD4(+) T cells or the use of small interfering RNA (siRNA) in mouse or human T cells increased IL-9 production, whereas ectopic SIRT1 expression inhibited it. Notably, SIRT1 inhibited Th9 cell differentiation that regulated anti-tumor immunity and allergic pulmonary inflammation. Glycolytic activation through the mTOR-hypoxia-inducible factor-1α (HIF1α) was required for the differentiation of Th9 cells that conferred protection against tumors and is involved in allergic airway inflammation. Our results define the essential features of SIRT1-mTOR-HIF1α signaling-coupled glycolytic pathway in inducing Th9 cell differentiation, with implications for metabolic reprogramming as an immunotherapeutic approach.


Asunto(s)
Hipersensibilidad/inmunología , Melanoma/inmunología , Sirtuina 1/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-9/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales , ARN Interferente Pequeño/genética , Transducción de Señal , Sirtuina 1/genética , Serina-Treonina Quinasas TOR/metabolismo , Activación Transcripcional
10.
Artículo en Inglés | MEDLINE | ID: mdl-38820123

RESUMEN

RATIONALE: Volatile organic compounds (VOCs) in asthmatic breath may be associated with sputum eosinophilia. We developed a volatile biomarker-signature to predict sputum eosinophilia in asthma. METHODS: VOCs emitted into the space above sputum samples (headspace) from severe asthmatics (n=36) were collected onto sorbent tubes and analysed using thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Elastic net regression identified stable VOCs associated with sputum eosinophilia ≥3% and generated a volatile biomarker signature. This VOC signature was validated in breath samples from: (I) acute asthmatics according to blood eosinophilia ≥0.3x109cells/L or sputum eosinophilia of ≥ 3% in the UK EMBER consortium (n=65) and U-BIOPRED-IMI consortium (n=42). Breath samples were collected onto sorbent tubes (EMBER) or Tedlar bags (U-BIOPRED) and analysed by gas-chromatography-mass spectrometry (GC×GC-MS -EMBER or GC-MS -U-BIOPRED). MAIN RESULTS: The in vitro headspace identified 19 VOCs associated with sputum eosinophilia and the derived VOC signature yielded good diagnostic accuracy for sputum eosinophilia ≥ 3% in headspace (AUROC (95% CI) 0.90(0.80-0.99), p<0.0001), correlated inversely with sputum eosinophil % (rs= -0.71, p<0.0001) and outperformed FeNO (AUROC (95% CI) 0.61(0.35-0.86). Analysis of exhaled breath in replication cohorts yielded a VOC signature AUROC (95% CI) for acute asthma exacerbations of 0.89(0.76-1.0) (EMBER cohort) with sputum eosinophilia and 0.90(0.75-1.0) in U-BIOPRED - again outperforming FeNO in U-BIOPRED 0.62 (0.33-0.90). CONCLUSIONS: We have discovered and provided early-stage clinical validation of a volatile biomarker signature associated with eosinophilic airway inflammation. Further work is needed to translate our discovery using point of care clinical sensors.

11.
Am J Respir Crit Care Med ; 209(11): 1338-1350, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38259174

RESUMEN

Rationale: Pharmacological improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function with elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes in patients with cystic fibrosis (CF). However, ETI effects on impaired mucosal homeostasis and host defense at the molecular and cellular levels in the airways of patients with CF remain unknown. Objectives: To investigate effects of ETI on the transcriptome of nasal epithelial and immune cells from children with CF at the single-cell level. Methods: Nasal swabs from 13 children with CF and at least one F508del allele aged 6 to 11 years were collected at baseline and 3 months after initiation of ETI, subjected to single-cell RNA sequencing, and compared with swabs from 12 age-matched healthy children. Measurements and Main Results: Proportions of CFTR-positive cells were decreased in epithelial basal, club, and goblet cells, but not in ionocytes, from children with CF at baseline and were restored by ETI therapy to nearly healthy levels. Single-cell transcriptomics revealed an impaired IFN signaling and reduced expression of major histocompatibility complex classes I and II encoding genes in epithelial cells of children with CF at baseline, which was partially restored by ETI. In addition, ETI therapy markedly reduced the inflammatory phenotype of immune cells, particularly of neutrophils and macrophages. Conclusions: Pharmacological improvement of CFTR function improves innate mucosal immunity and reduces immune cell inflammatory responses in the upper airways of children with CF at the single-cell level, highlighting the potential to restore epithelial homeostasis and host defense in CF airways by early initiation of ETI therapy.


Asunto(s)
Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Homeostasis , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/inmunología , Fibrosis Quística/fisiopatología , Niño , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Masculino , Benzodioxoles/uso terapéutico , Benzodioxoles/farmacología , Aminofenoles/uso terapéutico , Aminofenoles/farmacología , Quinolonas/uso terapéutico , Quinolonas/farmacología , Indoles/uso terapéutico , Indoles/farmacología , Combinación de Medicamentos , Quinolinas/uso terapéutico , Quinolinas/farmacología , Pirazoles/uso terapéutico , Pirazoles/farmacología , Pirroles/uso terapéutico , Pirroles/farmacología , Mucosa Nasal/inmunología , Piridinas/uso terapéutico , Piridinas/farmacología
12.
Semin Immunol ; 53: 101530, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34802872

RESUMEN

The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.


Asunto(s)
Helmintos , Parásitos , Animales , Helmintos/fisiología , Humanos , Sistema Inmunológico
13.
J Allergy Clin Immunol ; 153(5): 1169-1180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369030

RESUMEN

The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.


Asunto(s)
Células Epiteliales , Homeostasis , Inflamación , Neuronas , Humanos , Homeostasis/inmunología , Animales , Inflamación/inmunología , Células Epiteliales/inmunología , Neuronas/inmunología , Comunicación Celular/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Membrana Mucosa/inmunología
14.
Immunol Rev ; 299(1): 61-73, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33410165

RESUMEN

B cells are critical mediators of humoral immune responses in the airways through antibody production, antigen presentation, and cytokine secretion. In addition, a subset of B cells, known as regulatory B cells (Bregs), exhibit immunosuppressive functions via diverse regulatory mechanisms. Bregs modulate immune responses via the secretion of IL-10, IL-35, and tumor growth factor-ß (TGF-ß), and by direct cell contact. The balance between effector and regulatory B cell functions is critical in the maintenance of immune homeostasis. The importance of Bregs in airway immune responses is emphasized by the different respiratory disorders associated with abnormalities in Breg numbers and function. In this review, we summarize the role of immunosuppressive Bregs in airway inflammatory diseases and highlight the importance of this subset in the maintenance of respiratory health. We propose that improved understanding of signals in the lung microenvironment that drive Breg differentiation can provide novel therapeutic avenues for improved management of respiratory diseases.


Asunto(s)
Linfocitos B Reguladores , Presentación de Antígeno , Diferenciación Celular , Citocinas , Inmunidad Humoral
15.
Immunology ; 172(2): 226-234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38409805

RESUMEN

Group 2 innate lymphoid cells (ILC2s) play critical roles in driving the pathogenesis of allergic airway inflammation. The mechanisms underlying the regulation of ILC2s remain to be fully understood. Here, we identified neuropilin-1 (NRP1) as a surface marker of ILC2s in response to IL-33 stimulation. NRP1 was abundantly expressed in ILC2s from lung under steady state, which was significantly reduced upon IL-33 stimulation. ILC2s with high expression of NRP1 (NRP1high) displayed lower response to IL-33, as compared with NRP1low ILC2s. Transcriptional profiling and flow cytometric analysis showed that downregulation of AKT-mTOR signalling participated in the diminished functionality of NRP1high ILC2s. These observations revealed a potential role of NRP1 in ILC2s responses under allergic inflammatory condition.


Asunto(s)
Regulación hacia Abajo , Inmunidad Innata , Interleucina-33 , Linfocitos , Neuropilina-1 , Transducción de Señal , Interleucina-33/metabolismo , Interleucina-33/inmunología , Animales , Neuropilina-1/metabolismo , Neuropilina-1/genética , Ratones , Linfocitos/inmunología , Linfocitos/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL
16.
Immunology ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829009

RESUMEN

Overexpression of T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells has been observed in smokers. However, whether and how galectin-9 (Gal-9)/TIM-3 signal between T-regulatory cells (Tregs) and type 17 helper (Th17) cells contributes to tobacco smoke-induced airway inflammation remains unclear. Here, we aimed to explore the role of the Gal-9/TIM-3 signal between Tregs and Th17 cells during chronic tobacco smoke exposure. Tregs phenotype and the expression of TIM-3 on CD4+ T cells were detected in a mouse model of experimental emphysema. The role of TIM-3 in CD4+ T cells was explored in a HAVCR2-/- mouse model and in mice that received recombinant anti-TIM3. The crosstalk between Gal-9 and Tim-3 was evaluated by coculture Tregs with effector CD4+ T cells. We also invested the expression of Gal-9 in Tregs in patients with COPD. Our study revealed that chronic tobacco smoke exposure significantly reduces the frequency of Tregs in the lungs of mice and remarkably shapes the heterogeneity of Tregs by downregulating the expression of Gal-9. We observed a pro-inflammatory but restrained phenotypic transition of CD4+ T cells after tobacco smoke exposure, which was maintained by TIM-3. The restrained phenotype of CD4+ T cells was perturbed when TIM-3 was deleted or neutralised. Tregs from the lungs of mice with emphysema displayed a blunt ability to inhibit the differentiation and proliferation of Th17 cells. The inhibitory function of Tregs was partially restored by using recombinant Gal-9. The interaction between Gal-9 and TIM-3 inhibits the differentiation of Th17 cells and promotes apoptosis of CD4+ T cells, possibly by interfering with the expression of retinoic acid receptor-related orphan receptor gamma t. The expression of Gal-9 in Tregs was reduced in patients with COPD, which was associated with Th17 response and lung function. These findings present a new paradigm that impairment of Gal-9/Tim-3 crosstalk between Tregs and Th17 cells during chronic tobacco smoke exposure promotes tobacco smoke-induced airway/lung inflammation.

17.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L190-L205, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084427

RESUMEN

Tumor necrosis factor α (TNFα), a proinflammatory cytokine, plays a significant role in mediating the effects of acute inflammation in response to allergens, pollutants, and respiratory infections. Previously, we showed that acute exposure to TNFα induces mitochondrial fragmentation in human airway smooth muscle (hASM) cells, which is associated with increased expression of dynamin-related protein 1 (DRP1). Phosphorylation of DRP1 at serine 616 (pDRP1S616) promotes its translocation and binding to the outer mitochondrial membrane (OMM) and mediates mitochondrial fragmentation. Previously, we reported that TNFα exposure triggers protein unfolding and triggers an endoplasmic reticulum (ER) stress response involving phosphorylation of inositol-requiring enzyme 1α (pIRE1α) at serine 724 (pIRE1αS724) and subsequent splicing of X-box binding protein 1 (XBP1s) in hASM cells. We hypothesize that TNFα-mediated activation of the pIRE1αS724/XBP1s ER stress pathway in hASM cells transcriptionally activates genes that encode kinases responsible for pDRP1S616 phosphorylation. Using 3-D confocal imaging of MitoTracker green-labeled mitochondria, we found that TNFα treatment for 6 h induces mitochondrial fragmentation in hASM cells. We also confirmed that 6 h TNFα treatment activates the pIRE1α/XBP1s ER stress pathway. Using in silico analysis and ChIP assay, we showed that CDK1 and CDK5, kinases involved in the phosphorylation of pDRP1S616, are transcriptionally targeted by XBP1s. TNFα treatment increased the binding affinity of XBP1s on the promoter regions of CDK1 and CDK5, and this was associated with an increase in pDRP1S616 and mitochondria fragmentation. This study reveals a new underlying molecular mechanism for TNFα-induced mitochondrial fragmentation in hASM cells.NEW & NOTEWORTHY Airway inflammation is increasing worldwide. Proinflammatory cytokines mediate an adaptive mechanism to overcome inflammation-induced cellular stress. Previously, we reported that TNFα mediates hASM cellular responses, leading to increased force and ATP consumption associated with increased O2 consumption, and oxidative stress. This study indicates that TNFα induces ER stress, which induces mitochondrial fragmentation via pIRE1αS724/XBP1s mediated CDK1/5 upregulation and pDRP1S616 phosphorylation. Mitochondrial fragmentation may promote hASM mitochondrial biogenesis to maintain healthy mitochondrial pool.


Asunto(s)
Citocinas , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Fosforilación , Citocinas/metabolismo , Miocitos del Músculo Liso/metabolismo , Inflamación , Serina/metabolismo
18.
Eur J Immunol ; 53(7): e2250135, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37177812

RESUMEN

The currently observed high prevalence of allergic diseases has been associated with changes in microbial exposure in industrialized countries. Defined bacterial components represent a new strategy for modulating the allergic immune response. We show that intranasal administration of exopolysaccharide (EPS) isolated from Lacticaseibacillus (L.) rhamnosus LOCK900 induces TGF-ß1, IgA, and regulatory FoxP3+ T-cells in the lungs of naïve mice. Using the ovalbumin mouse model, we demonstrate that intranasal administration of EPS downregulates the development of allergic airway inflammation and the Th2 cytokine response in sensitized individuals. At the same time, EPS treatment of sensitized mice, similar to EPS-induced responses in naïve mice, significantly increased the level of total, OVA-specific, and also bacteria-specific IgA in bronchoalveolar lavage and the number of IgA-producing B-cells in the lung tissue of these mice. Thus, EPS derived from L. rhamnosus LOCK900 can be considered a safe candidate for preventing the development of allergic symptoms in the lungs of sensitized individuals upon exposure to an allergen.


Asunto(s)
Hipersensibilidad , Lacticaseibacillus rhamnosus , Animales , Ratones , Lacticaseibacillus , Pulmón , Inflamación , Modelos Animales de Enfermedad , Inmunoglobulina A , Ovalbúmina , Ratones Endogámicos BALB C , Líquido del Lavado Bronquioalveolar
19.
J Gene Med ; 26(7): e3718, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979822

RESUMEN

BACKGROUND: Icariin (ICA) inhibits inflammatory response in various diseases, but the mechanism underlying ICA treating airway inflammation in asthma needs further understood. We aimed to predict and validate the potential targets of ICA against asthma-associated airway inflammation using network pharmacology and experiments. METHODS: The ovalbumin-induced asthma-associated airway inflammation mice model was established. The effects of ICA were evaluated by behavioral, airway hyperresponsiveness, lung pathological changes, inflammatory cell and cytokines counts. Next, the corresponding targets of ICA were mined via the SEA, CTD, HERB, PharmMapper, Symmap database and the literature. Pubmed-Gene and GeneCards databases were used to screen asthma and airway inflammation-related targets. The overlapping targets were used to build an interaction network, analyze gene ontology and enrich pathways. Subsequently, flow cytometry, quantitative real-time PCR and western blotting were employed for validation. RESULTS: ICA alleviated the airway inflammation of asthma; 402 targets of ICA, 5136 targets of asthma and 4531 targets of airway inflammation were screened; 216 overlapping targets were matched and predicted ICA possesses the potential to modulate asthmatic airway inflammation by macrophage activation/polarization. Additionally, ICA decreased M1 but elevated M2. Potential targets that were disrupted by asthma inflammation were restored by ICA treatment. CONCLUSIONS: ICA alleviates airway inflammation in asthma by inhibiting the M1 polarization of alveolar macrophages, which is related to metabolic reprogramming. Jun, Jak2, Syk, Tnf, Aldh2, Aldh9a1, Nos1, Nos2 and Nos3 represent potential targets of therapeutic intervention. The present study enhances understanding of the anti-airway inflammation effects of ICA, especially in asthma.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Flavonoides , Activación de Macrófagos , Macrófagos Alveolares , Farmacología en Red , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Ratones , Flavonoides/farmacología , Flavonoides/uso terapéutico , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Activación de Macrófagos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Citocinas/metabolismo , Ovalbúmina , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Femenino
20.
Biochem Biophys Res Commun ; 709: 149831, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38552552

RESUMEN

Asthma and chronic obstructive pulmonary disease (COPD) are respiratory diseases associated with airway inflammation, which is the main pathogenesis. Although their causes and characteristics differ, in some cases, asthma and COPD may coexist in the same patient in a condition called asthma-COPD overlap (ACO). The prognosis of ACO is more unfavourable than those of asthma or COPD alone, without any treatment strategies demonstrating efficacy. Owing to its intricate spectrum of features, the detailed pathogenesis of how ACO exacerbates respiratory features remains unclear. In this study, we exposed papain-induced asthma model mice to tobacco smoke to establish an ACO mouse model, in which features of airway inflammation observed in both asthma and COPD were incorporated. This model exhibited distinctive mixed and corticosteroid-resistant airway inflammation and emphysematous changes that are characteristic of ACO. The novel mouse model established here is expected to significantly contribute to elucidating the mechanisms of the broad pathologies of ACO and identifying potential therapeutic targets.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Humo de Tabaco , Humanos , Animales , Ratones , Papaína , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Asma/tratamiento farmacológico , Inflamación/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA