Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.900
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO J ; 42(13): e112333, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37183585

RESUMEN

Enteric bacteria use up to 15% of their cellular energy for ammonium assimilation via glutamine synthetase (GS)/glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) in response to varying ammonium availability. However, the sensory mechanisms for effective and appropriate coordination between carbon metabolism and ammonium assimilation have not been fully elucidated. Here, we report that in Salmonella enterica, carbon metabolism coordinates the activities of GS/GDH via functionally reversible protein lysine acetylation. Glucose promotes Pat acetyltransferase-mediated acetylation and activation of adenylylated GS. Simultaneously, glucose induces GDH acetylation to inactivate the enzyme by impeding its catalytic centre, which is reversed upon GDH deacetylation by deacetylase CobB. Molecular dynamics (MD) simulations indicate that adenylylation is required for acetylation-dependent activation of GS. We show that acetylation and deacetylation occur within minutes of "glucose shock" to promptly adapt to ammonium/carbon variation and finely balance glutamine/glutamate synthesis. Finally, in a mouse infection model, reduced S. enterica growth caused by the expression of adenylylation-mimetic GS is rescued by acetylation-mimicking mutations. Thus, glucose-driven acetylation integrates signals from ammonium assimilation and carbon metabolism to fine-tune bacterial growth control.


Asunto(s)
Compuestos de Amonio , Salmonella enterica , Animales , Ratones , Compuestos de Amonio/metabolismo , Acetilación , Carbono/metabolismo , Glucosa , Glutamato Deshidrogenasa/metabolismo , Nitrógeno/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(3): e2209979120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626554

RESUMEN

The electrolysis of nitrate reduction to ammonia (NRA) is promising for obtaining value-added chemicals and mitigating environmental concerns. Recently, catalysts with high-performance ammonia synthesis from nitrate has been achieved under alkaline or acidic conditions. However, NRA in neutral solution still suffers from the low yield rate and selectivity of ammonia due to the low binding affinity and nucleophilicity of NO3-. Here, we confirmed that the in-situ-generated Fe(II) ions existed as specifically adsorbed cations in the inner Helmholtz plane (IHP) with a low redox potential. Inspired by this, a strategy (Fe-IHP strategy) was proposed to enhance NRA activity by tuning the affinity of the electrode-electrolyte interface. The specifically adsorbed Fe(II) ions [SA-Fe(II)] greatly alleviated the electrostatic repulsion around the interfaceresulting in a 10-fold lower in the adsorption-free energy of NO3- when compared to the case without SA-Fe(II). Meanwhile, the modulated interface accelerated the kinetic mass transfer process by 25 folds compared to the control. Under neutral conditions, a Faraday efficiency of 99.6%, a selectivity of 99%, and an extremely high NH3 yield rate of 485.8 mmol h-1 g-1 FeOOH were achieved. Theoretical calculations and in-situ Raman spectroscopy confirmed the electron-rich state of the SA-Fe(II) donated to p orbitals of N atom and favored the hydrogenation of *NO to *NOH for promoting the formation of high-selectivity ammonia. In sum, these findings complement the textbook on the specific adsorption of cations and provide insights into the design of low-cost NRA catalysts with efficient ammonia synthesis.


Asunto(s)
Amoníaco , Nitratos , Electrólitos , Adsorción , Hierro , Compuestos Ferrosos
3.
Proc Natl Acad Sci U S A ; 120(3): e2207080119, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623198

RESUMEN

The electrochemical conversion of waste nitrate (NO3-) to valuable ammonia (NH3) is an economical and environmentally friendly technology for sustainable NH3 production. It is beneficial for environmental nitrogen pollution management and is also an appealing alternative to the current Haber-Bosch process for NH3 production. However, owing to the competing hydrogen evolution reaction, it is necessary to design highly efficient and stable electrocatalysts with high selectivity. Herein, we report a rational design of Fe nanoparticles wrapped in N-doped carbon (Fe@N10-C) as a high NH3 selective and efficient electrocatalyst using a metal-organic framework precursor. We constructed a catalyst with new active sites by doping with nitrogen, which activated neighboring carbon atoms and enhanced metal-to-carbon electron transfer, resulting in high catalytic activity. These doped N sites play a key role in the NO3- electroreduction. As a result, the Fe@N10-C nanoparticles with optimal doping of N demonstrated remarkable performance, with a record-high NO3- removal capacity of 125.8 ± 0.5 mg N gcat-1 h-1 and nearly 100 % (99.7 ± 0.1%) selectivity. The catalyst also delivers an impressive NH3 production rate of 2647.7 µg h-1 cm-2 and high faradaic efficiency of 91.8 ± 0.1%. This work provides a new route for N-doped carbon-iron catalysis application and paves the way for addressing energy and environmental issues.

4.
Plant J ; 117(3): 786-804, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955989

RESUMEN

In natural and agricultural situations, ammonium ( NH 4 + ) is a preferred nitrogen (N) source for plants, but excessive amounts can be hazardous to them, known as NH 4 + toxicity. Nitrate ( NO 3 - ) has long been recognized to reduce NH 4 + toxicity. However, little is known about Brassica napus, a major oil crop that is sensitive to high NH 4 + . Here, we found that NO 3 - can mitigate NH 4 + toxicity by balancing rhizosphere and intracellular pH and accelerating ammonium assimilation in B. napus. NO 3 - increased the uptake of NO 3 - and NH 4 + under high NH 4 + circumstances by triggering the expression of NO 3 - and NH 4 + transporters, while NO 3 - and H+ efflux from the cytoplasm to the apoplast was enhanced by promoting the expression of NO 3 - efflux transporters and genes encoding plasma membrane H+ -ATPase. In addition, NO 3 - increased pH in the cytosol, vacuole, and rhizosphere, and down-regulated genes induced by acid stress. Root glutamine synthetase (GS) activity was elevated by NO 3 - under high NH 4 + conditions to enhance the assimilation of NH 4 + into amino acids, thereby reducing NH 4 + accumulation and translocation to shoot in rapeseed. In addition, root GS activity was highly dependent on the environmental pH. NO 3 - might induce metabolites involved in amino acid biosynthesis and malate metabolism in the tricarboxylic acid cycle, and inhibit phenylpropanoid metabolism to mitigate NH 4 + toxicity. Collectively, our results indicate that NO 3 - balances both rhizosphere and intracellular pH via effective NO 3 - transmembrane cycling, accelerates NH 4 + assimilation, and up-regulates malate metabolism to mitigate NH 4 + toxicity in oilseed rape.


Asunto(s)
Compuestos de Amonio , Brassica napus , Compuestos de Amonio/metabolismo , Nitratos/metabolismo , Brassica napus/genética , Rizosfera , Malatos/metabolismo , Nitrógeno/metabolismo , Concentración de Iones de Hidrógeno
5.
Plant Physiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046110

RESUMEN

Plants adapt to changing environmental conditions by adjusting their growth physiology. Nitrate (NO3-) and ammonium (NH4+) are the major inorganic nitrogen forms for plant uptake. However, high NH4+ inhibits plant growth, and roots undergo striking changes, such as inhibition of cell expansion and division, leading to reduced root elongation. In this work, we show that high NH4+ modulates nitrogen metabolism and root developmental physiology by inhibiting iron (Fe)-dependent Jasmonate (JA) signaling and response in Arabidopsis (Arabidopsis thaliana). Transcriptomic data suggested that NH4+ availability regulates Fe and JA-responsive genes. High NH4+ levels led to enhanced root Fe accumulation, which impaired nitrogen balance and growth by suppressing JA biosynthesis and signaling response. Integrating pharmacological, physiological, and genetic experiments revealed the involvement of NH4+ and Fe-derived responses in regulating root growth and nitrogen metabolism through modulation of the JA pathway during NH4+ stress. The JA signaling transcription factor MYC2 directly bound the promoter of the NITRATE TRANSPORTER 1.1 (NRT1.1) and repressed it to optimize the NH4+/Fe-JA balance for plant adaptation during NH4+ stress. Our findings illustrate the intricate balance between nutrient and hormone-derived signaling pathways that appear essential for optimizing plant growth by adjusting physiological and metabolic responses during NH4+/Fe stress.

6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101982

RESUMEN

Ammonia (NH3) is an ideal carbon-free power source in the future sustainable hydrogen economy for growing energy demand. The electrochemical nitrate reduction reaction (NO3-RR) is a promising approach for nitrate removal and NH3 production at ambient conditions, but efficient electrocatalysts are lacking. Here, we present a metal-organic framework (MOF)-derived cobalt-doped Fe@Fe2O3 (Co-Fe@Fe2O3) NO3-RR catalyst for electrochemical energy production. This catalyst has a nitrate removal capacity of 100.8 mg N gcat-1 h-1 and an ammonium selectivity of 99.0 ± 0.1%, which was the highest among all reported research. In addition, NH3 was produced at a rate of 1,505.9 µg h-1 cm-2, and the maximum faradaic efficiency was 85.2 ± 0.6%. Experimental and computational results reveal that the high performance of Co-Fe@Fe2O3 results from cobalt doping, which tunes the Fe d-band center, enabling the adsorption energies for intermediates to be modulated and suppressing hydrogen production. Thus, this study provides a strategy in the design of electrocatalysts in electrochemical nitrate reduction.

7.
Proc Natl Acad Sci U S A ; 119(49): e2215855119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459643

RESUMEN

Most diazotrophs fix nitrogen only under nitrogen-limiting conditions, for example, in the presence of relatively low concentrations of NH4+ (0 to 2 mM). However, Paenibacillus sabinae T27 exhibits an unusual pattern of nitrogen regulation of nitrogen fixation, since although nitrogenase activities are high under nitrogen-limiting conditions (0 to 3 mM NH4+) and are repressed under conditions of nitrogen sufficiency (4 to 30 mM NH4+), nitrogenase activity is reestablished when very high levels of NH4+ (30 to 300 mM) are present in the medium. To further understand this pattern of nitrogen fixation regulation, we carried out transcriptome analyses of P. sabinae T27 in response to increasing ammonium concentrations. As anticipated, the nif genes were highly expressed, either in the absence of fixed nitrogen or in the presence of a high concentration of NH4+ (100 mM), but were subject to negative feedback regulation at an intermediate concentration of NH4+ (10 mM). Among the differentially expressed genes, ald1, encoding alanine dehydrogenase (ADH1), was highly expressed in the presence of a high level of NH4+ (100 mM). Mutation and complementation experiments revealed that ald1 is required for nitrogen fixation at high ammonium concentrations. We demonstrate that alanine, synthesized by ADH1 from pyruvate and NH4+, inhibits GS activity, leading to a low intracellular glutamine concentration that prevents feedback inhibition of GS and mimics nitrogen limitation, enabling activation of nif transcription by the nitrogen-responsive regulator GlnR in the presence of high levels of extracellular ammonium.


Asunto(s)
Alanina-Deshidrogenasa , Compuestos de Amonio , Fijación del Nitrógeno/genética , Alanina/genética , Nitrógeno , Ácido Pirúvico , Nitrogenasa/genética
8.
Proc Natl Acad Sci U S A ; 119(50): e2214545119, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472961

RESUMEN

Aqueous rechargeable ammonium-ion batteries (AIBs) possess the characteristics of safety, low cost, environmental friendliness, and fast diffusion kinetics. However, their energy density is often limited due to the low specific capacity of cathode materials and narrow electrochemical stability windows of electrolytes. Herein, high-performance aqueous AIBs were designed by coupling Fe-substituted manganese-based Prussian blue analog (FeMnHCF) cathodes and highly concentrated NH4CF3SO3 electrolytes. In FeMnHCF, Mn3+/Mn2+-N redox reaction at high potential was introduced, and two metal active redox species of Mn and Fe were achieved. To match such FeMnHCF cathodes, highly concentrated NH4CF3SO3 electrolyte was further developed, where NH4+ ion displays low-solvation structure because of the increased coordination number of CF3SO3- anions. Furthermore, the water molecules are confined by NH4+ and CF3SO3- ions in their solvation sheath, leading to weak interaction between water molecules and thus effectively extending the voltage window of electrolyte. Consequently, the FeMnHCF electrodes present high reversibility during the charge/discharge process. Moreover, owing to a small amount of free water in concentrated electrolyte, the dissolution of FeMnHCF is also inhibited. As a result, the assembled aqueous AIBs exhibit enhanced energy density, excellent rate capability, and stable cycling behavior. This work provides a creative route to construct high-performance aqueous AIBs.

9.
Nano Lett ; 24(34): 10418-10425, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39158928

RESUMEN

Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS2 QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS2 QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS2 QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.

10.
J Biol Chem ; 299(11): 105275, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741457

RESUMEN

It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.


Asunto(s)
Aminoácidos , Epitelio Pigmentado de la Retina , Animales , Humanos , Ratones , Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Glutamatos/metabolismo , Glutamina/metabolismo , Nitrógeno/metabolismo , Prolina/metabolismo , Prolina Oxidasa/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
11.
Plant J ; 116(1): 87-99, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37340958

RESUMEN

Nitrogen (N) is a vital major nutrient for rice (Oryza sativa). Rice responds to different applications of N by altering its root morphology, including root elongation. Although ammonium ( NH 4 + ) is the primary source of N for rice, NH 4 + is toxic to rice roots and inhibits root elongation. However, the precise molecular mechanism that NH 4 + -inhibited root elongation of rice is not well understood. Here, we identified a rice T-DNA insert mutant of OsMADS5 with a longer seminal root (SR) under sufficient N conditions. Reverse-transcription quantitative PCR analysis revealed that the expression level of OsMADS5 was increased under NH 4 + compared with NO 3 - supply. Under NH 4 + conditions, knocking out OsMADS5 (cas9) produced a longer SR, phenocopying osmads5, while there was no significant difference in SR length between wild-type and cas9 under NO 3 - supply. Moreover, OsMADS5-overexpression plants displayed the opposite SR phenotype. Further study demonstrated that enhancement of OsMADS5 by NH 4 + supply inhibited rice SR elongation, likely by reducing root meristem activity of root tip, with the involvement of OsCYCB1;1. We also found that OsMADS5 interacted with OsSPL14 and OsSPL17 (OsSPL14/17) to repress their transcriptional activation by attenuating DNA binding ability. Moreover, loss of OsSPL14/17 function in osmads5 eliminated its stimulative effect on SR elongation under NH 4 + conditions, implying OsSPL14/17 may function downstream of OsMADS5 to mediate rice SR elongation under NH 4 + supply. Overall, our results indicate the existence of a novel modulatory pathway in which enhancement of OsMADS5 by NH 4 + supply represses the transcriptional activities of OsSPL14/17 to restrict SR elongation of rice.


Asunto(s)
Compuestos de Amonio , Oryza , Meristema/metabolismo , Oryza/metabolismo , Raíces de Plantas/metabolismo , Compuestos de Amonio/metabolismo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas
12.
Pflugers Arch ; 476(4): 579-592, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279993

RESUMEN

Metabolic acidosis is a frequent complication in non-transplant chronic kidney disease (CKD) and after kidney transplantation. It occurs when net endogenous acid production exceeds net acid excretion. While nephron loss with reduced ammoniagenesis is the main cause of acid retention in non-transplant CKD patients, additional pathophysiological mechanisms are likely inflicted in kidney transplant recipients. Functional tubular damage by calcineurin inhibitors seems to play a key role causing renal tubular acidosis. Notably, experimental and clinical studies over the past decades have provided evidence that metabolic acidosis may not only be a consequence of CKD but also a driver of disease. In metabolic acidosis, activation of hormonal systems and the complement system resulting in fibrosis have been described. Further studies of changes in renal metabolism will likely contribute to a deeper understanding of the pathophysiology of metabolic acidosis in CKD. While alkali supplementation in case of reduced serum bicarbonate < 22 mmol/l has been endorsed by CKD guidelines for many years to slow renal functional decline, among other considerations, beneficial effects and thresholds for treatment have lately been under intense debate. This review article discusses this topic in light of the most recent results of trials assessing the efficacy of dietary and pharmacological interventions in CKD and kidney transplant patients.


Asunto(s)
Acidosis Tubular Renal , Acidosis , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Riñón/metabolismo , Acidosis Tubular Renal/metabolismo , Dieta
13.
Biochem Cell Biol ; 102(4): 342-345, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696838

RESUMEN

Lipocalin-2 (LCN2), an effector molecule of the innate immune system that is small enough to be tagged as a reporter molecule, can be coupled with the ferric ion through a siderophore such as enterobactin (Ent). Mintbody (modification-specific intracellular antibody) can track a posttranslational protein modification in epigenetics. We constructed plasmids expressing the LCN2 hybrid of mintbody to examine the potential of LCN2 as a novel reporter for magnetic resonance imaging (MRI). Cells expressing the LCN2 hybrid of mintbody showed proper expression and localization of the hybrid and responded reasonably to Ent, suggesting their potential for in vivo study by MRI.


Asunto(s)
Lipocalina 2 , Lipocalinas , Lipocalina 2/metabolismo , Lipocalina 2/genética , Humanos , Lipocalinas/metabolismo , Lipocalinas/genética , Imagen por Resonancia Magnética , Genes Reporteros , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/genética , Enterobactina/metabolismo , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética
14.
J Mol Evol ; 92(2): 121-137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38489069

RESUMEN

Cyanobacteria are recognised for their pivotal roles in aquatic ecosystems, serving as primary producers and major agents in diazotrophic processes. Currently, the primary focus of cyanobacterial research lies in gaining a more detailed understanding of these well-established ecosystem functions. However, their involvement and impact on other crucial biogeochemical cycles remain understudied. This knowledge gap is partially attributed to the challenges associated with culturing cyanobacteria in controlled laboratory conditions and the limited understanding of their specific growth requirements. This can be circumvented partially by the culture-independent methods which can shed light on the genomic potential of cyanobacterial species and answer more profound questions about the evolution of other key biogeochemical functions. In this study, we assembled 83 cyanobacterial genomes from metagenomic data generated from environmental DNA extracted from a brackish water lagoon (Chilika Lake, India). We taxonomically classified these metagenome-assembled genomes (MAGs) and found that about 92.77% of them are novel genomes at the species level. We then annotated these cyanobacterial MAGs for all the encoded functions using KEGG Orthology. Interestingly, we found two previously unreported functions in Cyanobacteria, namely, DNRA (Dissimilatory Nitrate Reduction to Ammonium) and DMSP (Dimethylsulfoniopropionate) synthesis in multiple MAGs using nirBD and dsyB genes as markers. We validated their presence in several publicly available cyanobacterial isolate genomes. Further, we identified incongruities between the evolutionary patterns of species and the marker genes and elucidated the underlying reasons for these discrepancies. This study expands our overall comprehension of the contribution of cyanobacteria to the biogeochemical cycling in coastal brackish ecosystems.


Asunto(s)
Compuestos de Amonio , Cianobacterias , Ecosistema , Cianobacterias/genética , Metagenoma , Nitratos
15.
BMC Plant Biol ; 24(1): 281, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38614965

RESUMEN

BACKGROUND: The presence of oxygen in the growth medium is absolutely essential for root development and the overall metabolic processes of plants. When plants do not have an adequate oxygen supply for respiration, they can experience a condition known as hypoxia. In order to investigate the impact of different nitrogen forms and varying oxygen levels in nutrient solutions on the growth, photosynthesis, and chlorophyll fluorescence parameters of bell pepper plants, a comprehensive study was conducted. The experiment was designed as a factorial experiment, considering two main factors: nitrogen forms (calcium nitrate and ammonium sulfate) with a fixed nitrogen concentration of 5 mM, and the oxygen levels of the nutrient solutions (ranging from 1.8 ± 0.2 to 5.3 ± 0.2 mg. L-1). RESULTS: The study examined the effects of nitrogen (NH4+ and NO3-) application on various parameters of vegetative growth. The results demonstrated that the use of ammonium (NH4+) led to a reduction in the most measured parameters, including the fresh and dry mass of both the root and shoot, at low O2 concentrations of 1.8 ± 0.2; 2.6 ± 0.2 and 3.8 ± 0.2 mg. L-1. However, an interesting observation was made regarding the impact of oxygen levels on root growth in plants grown with nitrate (NO3-). Specifically, the highest levels of oxygen significantly increased root growth in NO3--fed plants. Additionally, the application of NH4+ resulted in an increase in chlorophyll concentration in the leaves, particularly when combined with high oxygen levels in the nutrient solution. On the other hand, leaves of plants fed with NO3- exhibited higher photosynthetic rate (A), intrinsic water use efficiency (iWUE), and instantaneous carboxylation efficiency (A/Ci) compared to those fed with NH4+. Furthermore, it was found that NO3--fed plants displayed the highest instantaneous carboxylation efficiency at oxygen levels of 3.8 and 5.3 mg. L-1, while the lowest efficiency was observed at oxygen levels of 1.8 and 2.6 mg. L-1. In contrast, NH4+-grown plants exhibited a higher maximal quantum yield of PSII photochemistry (Fv/Fm), as well as increased variable fluorescence (Fv) and maximum fluorescence (Fm), compared to NO3--grown plants. Interestingly, the NO3--fed plants showed an increase in Fv/Fm, Fv, and Fm with the elevation of oxygen concentration in the nutrient solution up to 5.3 mg. L-1. CONCLUSION: This study showed that, the growth and photosynthesis parameters in bell pepper plants are sensitive to oxygen stress in floating hydroponic culture. Therefore, the oxygen level in the nutrient solution must not be lower than 3.8 and 5.3 mg. L-1 in NH4+ and NO3- -supplied culture media or nutrient solutions, respectively.


Asunto(s)
Nutrientes , Oxígeno , Hidroponía , Clorofila , Medios de Cultivo , Nitrógeno
16.
BMC Plant Biol ; 24(1): 218, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532351

RESUMEN

BACKGROUND: In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. RESULTS: The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3-/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3-/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. CONCLUSIONS: Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.


Asunto(s)
Compuestos de Amonio , Anemia Hipocrómica , Deficiencias de Hierro , Vitis , Nitrógeno/metabolismo , Nitratos/metabolismo , Anemia Hipocrómica/metabolismo , Vitis/genética , Compuestos de Amonio/metabolismo , Raíces de Plantas/metabolismo
17.
BMC Plant Biol ; 24(1): 217, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532319

RESUMEN

Catalpa bungei is a precious timber species distributed in North China where drought often occurs. To clarify adaptive responses of C. bungei to partial- and full- root-zone drought under the influence of nitrogen forms, a two-factor experiment was conducted in which well-watered (WW), partial root-zone drought in horizontal direction (H-PRD) and in vertical direction (V-PRD), and full root-zone drought (FRD) were combined with nitrate-nitrogen (NN) and ammonium-nitrogen (AN) treatments. C. bungei responded to FRD by sharply closing stomata, decreasing gas exchange rate and increasing leaf instantaneous water use efficiency (WUEi). Under FRD condition, the growth of seedlings was severely inhibited and the effect of N forms was covered up by the drastic drought effect. In comparison, stomata conductance and gas exchanges were moderately inhibited by PRDs. WUEi in V-PRD treatment was superior to H-PRD due to the active stomata regulation resulting from a higher ABA level and active transcription of genes in abscisic acid (ABA) signaling pathway under V-PRD. Under both PRDs and FRD, nitrate benefited antioxidant defense, stomata regulation and leaf WUEi. Under V-PRD, WUEi in nitrate treatment was superior to that in ammonium treatment due to active stomata regulation by signaling network of nitric oxide (NO), Ca2+ and ABA. Under FRD, WUEi was higher in nitrate treatment due to the favoring photosynthetic efficiency resulting from active NO signal and antioxidant defense. The interactive effect of water and N forms was significant on wood xylem development. Superoxide dismutase (SOD) and catalase (CAT) largely contributes to stress tolerance and xylem development.


Asunto(s)
Nitratos , Nitrógeno , Nitrógeno/metabolismo , Sequías , Antioxidantes , Agua/metabolismo
18.
J Comput Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39142902

RESUMEN

In this work, the effects of two TiO2 polymorphs on the decomposition of ammonium perchlorate (NH4ClO4) were studied experimentally and theoretically. The interactions between AP and various surfaces of TiO2 were modeled using density functional theory (DFT) calculations. Specifically, the adsorption of AP on three rutile surfaces (1 1 0), (1 0 0), and (0 0 1), as well as two anatase surfaces (1 0 1), and (0 0 1) were modeled using cluster models, along with the decomposition of adsorbed AP into small molecules. The optimized complexes of the AP molecule on TiO2 surfaces were very stable, indicating strong covalent and hydrogen bonding interactions, leading to highly energetic adsorption reactions. The calculated energy of adsorption (ΔEads) ranged from -120.23 to -301.98 kJ/mol, with highly exergonic calculated Gibbs free energy (ΔGads) of reaction, and highly exothermic enthalpy of reaction (ΔHads). The decomposition of adsorbed AP was also found to have very negative ΔEdec values between -199.08 and -380.73 kJ/mol. The values of ΔGdec and ΔHdec reveal exergonic and exothermic reactions. The adsorption of AP on TiO2 surfaces anticipates the heat release of decomposition, in agreement with experimental results. The most common anatase surface, (1 0 1), was predicted to be more reactive for AP decomposition than the most stable rutile surface, (1 1 0), which was confirmed by experiments. DFT calculations show the mechanism for activation of the two TiO2 polymorphs is entropy driven.

19.
Small ; 20(13): e2306561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37968810

RESUMEN

The electrochemical properties of vanadium-based materials as cathode materials for aqueous zinc ion batteries are still restricted by low conductivity, sluggish reaction kinetics, and poor structural stability. Herein, the [VO6] octahedron, as the basic unit of vanadium-oxide layer of ammonium vanadates (NH4V4O10, denoted as NVO), is incorporated by F atoms to regulate the coordinated environment of vanadium. Density functional theory (DFT) calculations and experimental results show that both physicochemical and electrochemical properties of NVO are improved by F-doping. The enhanced electronic conductivity accelerates the electron transfer and the expanded interlayer spacing expedites the diffusion kinetics of zinc ions. As a result, the F-doped NVO (F-NVO) electrode shows a high discharge capacity (465 mAh g-1 at 0.1 A g-1), good rate capability (260 mAh g-1 at 5 A g-1), and long-term cycling stability (88% capacity retention over 2000 cycles at 4 A g-1). The reaction kinetics and energy storage mechanism of F-NVO are further validated by in situ and ex situ characterizations.

20.
Small ; 20(26): e2309965, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247206

RESUMEN

As the feature size of integrated circuits continues to decrease, ruthenium (Ru) has been suggested as the successor to traditional Ta/TaN bilayers for barrier layer materials due to its unique properties. This research delves into the effects of ammonium nitrilotriacetate (NTA(NH4)3) on the chemical mechanical polishing (CMP) performance of Ru in H2O2-based slurry. The removal rate (RR) of Ru surged from 47 to 890 Å min-1, marking an increase of about 17 times. The essence of this mechanism lies in the triple synergistic effects of NTA(NH4)3 in promoting ruthenium (Ru) removal: 1) The interaction between NH 4 + ${\mathrm{NH}}_{\mathrm{4}}^{\mathrm{+}}$ from NTA(NH4)3 and SiO2 abrasives; 2) The chelating action of [(NH4)N(CH2COO)3]2- from NTA(NH4)3 on Ru and its oxides; 3) The ammoniation and chelation of Ru and its oxides by NH 4 + ${\mathrm{NH}}_{\mathrm{4}}^{\mathrm{+}}$ from NTA(NH4)3, which enhance the dissolution and corrosion of oxidized Ru, making its removal during the barrier layer CMP process more efficient through mechanical means. This research introduces a synergistic approach for the effective removal of Ru, shedding light on potential applications of CMP in the field of the integrated circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA