Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Small ; 20(11): e2306972, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143291

RESUMEN

Vanadium-based compounds are identified as promising cathode materials for aqueous zinc ion batteries due to their high specific capacity. However, the low intrinsic conductivity and sluggish Zn2+ diffusion kinetics seriously impede their further practical application. Here, oxygen vacancies on NH4 V4 O10 is reported as a high-performing cathode material for aqueous zinc ion batteries via a facile hydrothermal strategy. The introduction of oxygen vacancy accelerates the ion and charge transfer kinetics, reduces the diffusion barrier of zinc ions, and establishes a stable crystal structure during zinc ion (de-intercalation). As a result, the oxygen vacancy enriched NH4 V4 O10 exhibits a high specific capacity of ≈499 mA h g-1 at 0.2 A g-1 , an excellent rate capability of 296 mA h g-1 at 10 A g-1 and the specific capacity cycling stability with 95.1% retention at 5 A g-1 for 4000 cycles, superior to the NVO sample (186.4 mAh g-1 at 5 A g-1 , 66% capacity retention).

2.
Small ; 20(13): e2306276, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126597

RESUMEN

2D transition metal dichalcogenides (TMDs) have garnered significant interest as cathode materials for aqueous zinc-ion batteries (AZIBs) due to their open transport channels and abundant Zn2+ intercalation sites. However, unmodified TMDs exhibit low electrochemical activity and poor kinetics owing to the high binding energy and large hydration radius of divalent Zn2+. To overcome these limitations, an interlayer engineering strategy is proposed where K+ is preintercalated into K-MoS2 nanosheets, which then undergo in situ growth on carbon nanospheres (denoted as K-MoS2@C nanoflowers). This strategy stimulates in-plane redox-active sites, expands the interlayer spacing (from 6.16 to 9.42 Å), and induces the formation of abundant MoS2 1T-phase. The K-MoS2@C cathode demonstrates excellent redox activity and fast kinetics, attributed to the potassium ions acting as a structural "stabilizer" and an electrostatic interaction "shield," accelerating charge transfer, promoting Zn2+ diffusion, and ensuring structural stability. Meanwhile, the carbon nanospheres serve as a 3D conductive network for Zn2+ and enhance the cathode's hydrophilicity. More significantly, the outstanding electrochemical performance of K-MoS2@C, along with its superior biocompatibility and degradability of its related components, can enable an implantable energy supply, providing novel opportunities for the application of transient electronics.

3.
Small ; 20(31): e2400923, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38459642

RESUMEN

Aqueous zinc-ion batteries (ZIBs) are the new generation electrochemical energy storage systems. Recently, two-dimensional conductive metal-organic frameworks (2D c-MOFs) are attractive to serve as cathode materials of ZIBs due to their compositional diversity, abundant active sites, and excellent conductivity. Despite the growing interest in 2D c-MOFs, their application prospects are still to be explored. Herein, a tetraoxa[8]circulene (TOC) derivative with unique electronic structure and interesting redox-active property are synthesized to construct c-MOFs. A series of novel 2D c-MOFs (Cu-TOC, Zn-TOC and Mn-TOC) with different conductivities and packing modes are obtained by combining the linker tetraoxa[8]circulenes-2,3,5,6,8,9,11,12-octaol (8OH-TOC) and corresponding metal ions. Three c-MOFs all exhibit typical semiconducting properties, and Cu-TOC exhibits the highest electrical conductivity of 0.2 S cm-1 among them. Furthermore, their electrochemical performance as cathode materials for ZIBs have been investigated. They all performed high reversible capacity, decent cycle stability and excellent rate capability. This work reveals the key insights into the electrochemical application potential of 2D c-MOFs and advances their development as cathode materials in ZIBs.

4.
Chemistry ; 30(24): e202304287, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38380560

RESUMEN

Aqueous zinc ion batteries have been extensively researched due to their distinctive advantages such as low cost and high safety. Vanadium oxides are important cathode materials, however, poor cycle life caused by vanadium dissolution limits their application. Recent studies show that the lattice NH4 + in vanadium oxides can act as a pillar to enhance structural stability and play a crucial role in improving its cycling stability. Nevertheless, there is still a lack of research on the effect of the lattice NH4 + content on structural evolution and electrochemical performance. Herein, we synthesize vanadium oxides with different contents of lattice NH4 + by a one-step hydrothermal reaction. The vanadium oxides with lattice NH4 + exhibit high initial capacity, as well as good cycling stability and rate performance compared to bare vanadium oxide. Combined with electrochemical analyses, ex-situ structural characterizations, and in-situ X-ray diffraction tests, we reveal that the lattice NH4 + content plays a positive role in vanadium oxides' structural stability and cation diffusion kinetics. This work presents a direction for designing high-performance vanadium cathodes for aqueous zinc ion batteries.

5.
Nano Lett ; 23(20): 9491-9499, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37843076

RESUMEN

An electrolyte additive, with convenient operation and remarkable functions, has been regarded as an effective strategy for prolonging the cycle life of aqueous zinc ion batteries. However, it is still difficult to dynamically regulate the unstable Zn interface during long-term cycling. Herein, tricine was introduced as an efficient regulator to achieve a pH-stable and byproduct-free interface. The functional zwitterion of tricine not only inhibits interfacial pH perturbation and parasitic reactions by the trapping effect of an anionic group (-COO-) but also simultaneously creates a uniform electric field by the electrostatic shielding effect of a cationic group (-NH2+). Such synergy accordingly eliminates dendrite formation and creates a chemical equilibrium in the electrolyte, endowing the Zn||Zn cell with long-term Zn plating/stripping for 2060 h at 5 mA cm-2 and 720 h at 10 mA cm-2. As a result, the Zn||VS2 full cell under a high cathodic loading mass (8.6 mg cm-2) exhibits exceptional capacity retention of 93% after 1000 cycles.

6.
Molecules ; 29(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202927

RESUMEN

Aqueous zinc ion batteries (AZIBs) have received a lot of attention in electrochemical energy storage systems for their low cost, environmental compatibility, and good safety. However, cathode materials still face poor material stability and conductivity, which cause poor reversibility and poor rate performance in AZIBs. Herein, a heterogeneous structure combined with cation pre-intercalation strategies was used to prepare a novel CaV6O16·3H2O@Ni0.24V2O5·nH2O material (CaNiVO) for high-performance Zn storage. Excellent energy storage performance was achieved via the wide interlayer conductive network originating from the interlayer-embedded metal ions and heterointerfaces of the two-phase CaNiVO. Furthermore, this unique structure further showed excellent structural stability and led to fast electron/ion transport dynamics. Benefiting from the heterogeneous structure and cation pre-intercalation strategies, the CaNiVO electrodes showed an impressive specific capacity of 334.7 mAh g-1 at 0.1 A g-1 and a rate performance of 110.3 mAh g-1 at 2 A g-1. Therefore, this paper provides a feasible strategy for designing and optimizing cathode materials with superior Zn ion storage performance.

7.
Angew Chem Int Ed Engl ; : e202410900, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010737

RESUMEN

MnO2 is commonly used as the cathode material for aqueous zinc-ion batteries (AZIBs). The strong Coulombic interaction between Zn ions and the MnO2 lattice causes significant lattice distortion and, combined with the Jahn-Teller effect, results in Mn2+ dissolution and structural collapse. While proton intercalation can reduce lattice distortion, it changes the electrolyte pH, producing chemically inert byproducts. These issues greatly affect the reversibility of Zn2+ intercalation/extraction, leading to significant capacity degradation of MnO2. Herein, we propose a novel method to enhance the cycling stability of δ-MnO2 through selenium doping (Se-MnO2). Our work indicates that varying the selenium doping content can regulate the intercalation ratio of H+ in MnO2, thereby suppressing the formation of ZnMn2O4 by-products. Se doping mitigates the lattice strain of MnO2 during Zn2+ intercalation/deintercalation by reducing Mn-O octahedral distortion, modifying Mn-O bond length upon Zn2+ insertion, and alleviating Mn dissolution caused by the Jahn-Teller effect. The optimized Se-MnO2 (Se concentration of 0.8 at.%) deposited on carbon nanotube demonstrates a notable capacity of 386 mAh g-1 at 0.1 A g-1, with exceptional long-term cycle stability, retaining 102 mAh g-1 capacity after 5000 cycles at 3.0 A g-1.

8.
Small ; : e2306919, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063836

RESUMEN

Rechargeable aqueous zinc-ion batteries (ZIBs) have emerged as an alternative to lithium-ion batteries due to their affordability and high level of safety. However, their commercialization is hindered by the low mass loading and irreversible structural changes of the cathode materials during cycling. Here, a disordered phase of a manganese nickel cobalt dioxide cathode material derived from wastewater via a coprecipitation process is reported. When used as the cathode for aqueous ZIBs , the developed electrode delivers 98% capacity retention at a current density of 0.1 A g-1 and 72% capacity retention at 1 A g-1 while maintaining high mass loading (15 mg cm-2 ). The high performance is attributed to the structural stability of the Co and Ni codoped phase; the dopants effectively suppress Jahn-Teller distortion of the manganese dioxide during cycling, as revealed by operando X-ray absorption spectroscopy. Also, it is found that the Co and Ni co-doped phase effectively inhibits the dissolution of Mn2+ , resulting in enhanced durability without capacity decay at first 20 cycles. Further, it is found that the performance of the electrode is sensitive to the ratio of Ni to Co, providing important insight into rational design of more efficient cathode materials for low-cost, sustainable, rechargeable aqueous ZIBs.

9.
Chemistry ; 29(39): e202300409, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37125433

RESUMEN

Vanadium dioxide (VO2 (B)) is a proper cathode for aqueous zinc-ion batteries (ZIBs) due to its shear structure and high theoretical capacity. However, the sluggish kinetics and structure instability derived from the strong electrostatic interaction between Zn2+ and the VO2 host hinder its further application. Defect engineering is a useful way to circumvent the limitations. Herein, oxygen-defect VO2 (Od -VO2 ) with tunable oxygen vacancy concentration are obtained via a facile one-step hydrothermal method by adjusting ascorbic acid addition. It is proved that oxygen vacancies can provide extra active sites for Zn2+ storage and reduced electrostatic barrier for Zn2+ transportation, but excessive vacancy content would lead to a reverse effect. The Od -VO2 cathode with optimum oxygen vacancy concentration achieves an outstanding performance with a high capacity of 380 mAhg-1 at 0.2 A g-1 , excellent cycle stability with 92.6 % capacity retention after 2000 cycles at 3 A g-1 and a high energy density of 197 Wh kg-1 at the power density of 0.641 kW kg-1 . Therefore, this defect engineering method for Od -VO2 provides an attractive way for high-performance aqueous ZIB cathodes.

10.
Chemistry ; 29(20): e202203973, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36597275

RESUMEN

Zinc-based energy storage has lately gained popularity due to natural abundance, operational safety, high energy density. Unfortunately, dendrite growth is a common and intractable issue faced in existing zinc-ion batteries to shorten cycle lifespan/stability. This review summarizes recent progress in assembly component (e. g., anode, electrolyte, separator) engineering for dendrite-free zinc-ion batteries. First, diversiform strategies of Zn surface modification and Zn host design are presented to shield the fundamental adverse effect aroused by uneven zinc deposition on the anode. Then, subtle deployments of electrolyte constituents are illustrated to optimize the Zn2+ solvation structure for ultimate dendrite control and Coulombic efficiency elevation in aqueous systems and beyond (e. g., eutectic electrolytes). Furthermore, rational manipulation of advanced separators and the upgrade of zinc metal-free Zn2+ -storage devices are briefly discussed to explore the dendrite-free and high-level Zn2+ -storage. Finally, challenges and perspectives are proposed to offer research inspirations toward safe, high-efficiency and long-lifespan zinc storage.

11.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903389

RESUMEN

In terms of new-generation energy-storing devices, aqueous zinc-ion batteries (AZIBs) are becoming the prime candidates because of their inexpensive nature, inherent safety, environmental benignity and abundant resources. Nevertheless, due to a restrained selection of cathodes, AZIBs often perform unsatisfactorily under long-life cycling and high-rate conditions. Consequently, we propose a facile evaporation-induced self-assembly technique for preparing V2O3@carbonized dictyophora (V2O3@CD) composites, utilizing economical and easily available biomass dictyophora as carbon sources and NH4VO3 as metal sources. When assembled in AZIBs, the V2O3@CD exhibits a high initial discharge capacity of 281.9 mAh g-1 at 50 mA g-1. The discharge capacity is still up to 151.9 mAh g-1 after 1000 cycles at 1 A g-1, showing excellent long-cycle durability. The extraordinary high electrochemical effectiveness of V2O3@CD could be mainly attributed to the formation of porous carbonized dictyophora frame. The formed porous carbon skeleton can ensure efficient electron transport and prevent V2O3 from losing electrical contact due to volume changes caused by Zn2+ intercalation/deintercalation. The strategy of metal-oxide-filled carbonized biomass material may provide insights into developing high-performance AZIBs and other potential energy storage devices, with a wide application range.

12.
Chem Rec ; 22(10): e202200088, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35652535

RESUMEN

Aqueous zinc-ion batteries (AZIBs) with high safety and low cost are considered to be one of the alternatives to Li-ion batteries. In recent years, AZIBs have become a research hotspot, mainly focusing on the research of cathode, anode and electrolyte. Although many efforts have been made in cathode materials, their low specific capacity and poor cycle life remain unsolved. In fact, side reactions of zinc metal anodes, such as dendrite growth, zinc corrosion, and hydrogen evolution reactions (HER), are also the main factors restricting the electrochemical performance of AZIBs. In this review, we first discuss the fundamental of these adverse reactions. Then, the various solution strategies are summarized based on advanced materials and structural design. It includes surface modification and the internal structure optimization of Zn electrodes, the regulation of electrolytes and separators. Finally, we propose the future challenges and development prospects of zinc anode.

13.
Chem Rec ; 22(10): e202200079, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35635378

RESUMEN

Aqueous rechargeable zinc-ion batteries (ZIBs) featuring competitive performance, low cost and high safety hold great promise for applications in grid-scale energy storage and portable electronic devices. Metal-organic frameworks (MOFs), relying on their large framework structure and abundant active sites, have been identified as promising materials in ZIBs. This review comprehensively presents the current development of MOF-based materials including MOFs and their derivatives in ZIBs, which begins with Zn storage mechanism of MOFs, followed by introduction of various types of MOF-based cathode materials (PB and PBA, Mn-based MOF, V-based MOF, conductive MOF and their derivatives), and the regulation approaches for Zn deposition behavior. The key factors and optimization strategies of MOF-based materials that affect ZIBs performance are emphasized and discussed. Finally, the challenges and further research directions of MOF-based materials for advanced zinc-ion batteries are provided.

14.
Nanotechnology ; 34(8)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36356316

RESUMEN

The aqueous Zn-ion batteries (AZIBs) have been deemed as one of the most promising energy storage devices owing to their high safety, low cost, and environmental benignity. Nevertheless, the severe corrosion of zinc metal anode and side reactions between the anode and electrolyte greatly hinder the practical application of AZIBs. To address above-mentioned issues, herein, a nano-CaSiO3layer was coated on the surface of Zn metal anode via the solution casting method. Results showed that this hydrophobic coating layer could effectively inhibit the direct contact of Zn metal anode with electrolyte, suppressing its corrosion and side reactions during Zn deposition/stripping. When applied in symmetrical cells, the nano-CaSiO3coated Zn (CSO-Zn) electrode exhibited much longer cycle life than bare Zn electrode. Moreover, with this nano-CaSiO3modified Zn anode, both vanadium-based and manganese-based full cells depicted excellent capacity retention. This nano-CaSiO3coating layer provides a good choice for improving the stability of Zn metal anode for high-performance AZIBs.

15.
Nano Lett ; 21(7): 2738-2744, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33783214

RESUMEN

Aqueous rechargeable zinc ion batteries are promising candidates for grid-scale applications owing to their low cost and high safety. However, they are plagued by the lack of suitable cathode and anode materials. Herein, we report on potassium vanadate (KVO) nanobelts as a promising cathode for an aqueous zinc ion battery, which shows a high discharge capacity of 461 mA h g-1 at 0.2 A g-1 and exhibits a capacity retention of 96.2% over 4000 cycles at 10 A g-1. Furthermore, to enhance the energy efficiency in an aqueous zinc ion battery, a facile and effective method on the anode is demonstrated. The energy efficiency increases from 47.5% for Zn//KVO coupled with the zinc foil anode to 66.5% for AB-Zn//KVO coupled with an acetylene black film improved zinc foil anode at 10 A g-1. The remarkable electrochemical performance makes AB-Zn//KVO a strong candidate for a high-performance aqueous zinc ion battery.

16.
Angew Chem Int Ed Engl ; 61(12): e202117511, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35064728

RESUMEN

Elaborate molecular design on cathodes is of great importance for rechargeable aqueous zinc-organic batteries' performance elevation. Herein, we design a novel orthoquinone-based covalent organic framework with an ordered channel structures (BT-PTO COF) cathode for an ultrahigh performance aqueous zinc-organic battery. The ordered channel structure facilitates ions transfer and makes the COF follow a redox pseudocapacitance mechanism. Thus, it delivers a high reversible capacity of 225 mAh g-1 at 0.1 A g-1 and an exceptional long-term cyclability (retention rate 98.0 % at 5 A g-1 (≈18 C) after 10 000 cycles). Moreover, a co-insertion mechanism with Zn2+ first followed by two H+ is uncovered for the first time. Significantly, this co-insertion behaviour evolves to more H+ insertion routes at high current density and gives the COF ultra-fast kinetics thus it achieves unprecedented specific power of 184 kW kg-1 (COF) and a high energy density of 92.4 Wh kg-1 (COF) . Our work reports a superior organic material for zinc batteries and provides a design idea for future high-performance organic cathodes.

17.
Nanotechnology ; 33(12)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34875644

RESUMEN

Aqueous zinc-ion batteries have attracted the attention of the industry due to their low cost, good environmental friendliness, and competitive gravimetric energy density. However, zinc anodes, similar to lithium, sodium and other alkali metal anodes, are also plagued by dendrite problems. Zinc dendrites can penetrate through polymer membranes, and even glass fiber membranes which seriously hinders the development and application of aqueous zinc-ion batteries. To resolve this issue, certain additives are required. Here we have synthesized an electrochemical graphene oxide with novel electrolyte based on tryptophan, which allows to obtain few-layered sheets with a remarkably uniform morphology, good aqueous solution dispersion, easy preparation and environmental friendliness. We used this electrochemical graphene oxide as an additive to the electrolyte for aqueous zinc-ion batteries. The results of phase-field model combined with experimental characterization revealed that the addition of this material effectively promotes the uniform distribution of the electric field and the Zn-ion concentration field, reduces the nucleation overpotential of Zn metal, and provides a more uniform deposition process on the metal surface and improved cyclability of the aqueous Zn-ion battery. The resultant Zn∣Zn symmetric battery with the electrochemical graphene oxide additive affords a stable Zn anode, which provided service for more than 500 h at 0.2 mA cm-2and even more than 250 h at 1.0 mA cm-2. The Coulombic efficiency (98.7%) of Zn∣Cu half-cells and thus cyclability of aqueous Zn-ion batteries using electrochemical graphene oxide is significantly better compared to the additive-free electrolyte system. Therefore, our approach paves a promising avenue to foster the practical application of aqueous Zn-ion batteries for energy storage.

18.
Nanotechnology ; 32(31)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33906187

RESUMEN

Rechargeable aqueous zinc-ion batteries (AZIBs) have garnered widespread attention as a new large-scale energy storage candidate owing to their low cost and high theoretical capacity. Because of the unique divalent state of Zn2+and the existence of a strong electrostatic repulsion phenomenon, researchers are currently focusing on how to prepare high-performance cathode materials. In this study, we synthesized aluminum vanadate (AlV3O9) as a cathode material for AZIBs using a solvothermal method. Al3+acted as a pillar in the resultant structure and stabilized it. Furthermore, this large interlayer spacing enhanced the ion diffusion coefficient and accelerated the ion transport process. Because of these advantages, the AlV3O9(AVO) cathode exhibited excellent electrochemical performance, including a high capacity of 421.0 mA h g-1at 0.1 A g-1and a stable rate capability of 348.2 mA h g-1at 1 A g-1. Moreover, it exhibited a specific capacity of 202 mA h g-1even at a high current density of 3 A g-1(the capacity retention rate reached 84.38% after 1600 cycles). The prepared ZIBs presented a high power density of 366.6 W kg-1at an energy density of 286 W h kg-1. These extraordinary results indicate the great application potential of AVO as a cathode material for AZIBs.

19.
Nano Lett ; 18(3): 1758-1763, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29397745

RESUMEN

Rechargeable aqueous zinc-ion batteries are highly desirable for grid-scale applications due to their low cost and high safety; however, the poor cycling stability hinders their widespread application. Herein, a highly durable zinc-ion battery system with a Na2V6O16·1.63H2O nanowire cathode and an aqueous Zn(CF3SO3)2 electrolyte has been developed. The Na2V6O16·1.63H2O nanowires deliver a high specific capacity of 352 mAh g-1 at 50 mA g-1 and exhibit a capacity retention of 90% over 6000 cycles at 5000 mA g-1, which represents the best cycling performance compared with all previous reports. In contrast, the NaV3O8 nanowires maintain only 17% of the initial capacity after 4000 cycles at 5000 mA g-1. A single-nanowire-based zinc-ion battery is assembled, which reveals the intrinsic Zn2+ storage mechanism at nanoscale. The remarkable electrochemical performance especially the long-term cycling stability makes Na2V6O16·1.63H2O a promising cathode for a low-cost and safe aqueous zinc-ion battery.

20.
Materials (Basel) ; 17(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38930187

RESUMEN

Due to safety problems caused by the use of organic electrolytes in lithium-ion batteries and the high production cost brought by the limited lithium resources, water-based zinc-ion batteries have become a new research focus in the field of energy storage due to their low production cost, safety, efficiency, and environmental friendliness. This paper focused on vanadium dioxide and expanded graphite (EG) composite cathode materials. Given the cycling problem caused by the structural fragility of vanadium dioxide in zinc-ion batteries, the feasibility of preparing a new composite material is explored. The EG/VO2 composites were prepared by a simple hydrothermal method, and compared with the aqueous zinc-ion batteries assembled with a single type of VO2 under the same conditions, the electrode materials composited with high-purity sulfur-free expanded graphite showed more excellent capacity, cycling performance, and multiplicity performance, and the EG/VO2 composites possessed a high discharge ratio of 345 mAh g-1 at 0.1 A g-1, and the Coulombic efficiency was close to 100%. The EG/VO2 composite has a high specific discharge capacity of 345 mAh g-1 at 0.1 A g-1 with a Coulombic efficiency close to 100%, a capacity retention of 77% after 100 cycles, and 277.8 mAh g-1 with a capacity retention of 78% at a 20-fold increase in current density. The long cycle test data demonstrated that the composite with expanded graphite effectively improved the cycling performance of vanadium-based materials, and the composite maintained a stable Coulombic efficiency of 100% at a high current density of 2 A/g and still maintained a specific capacity of 108.9 mAh/g after 2000 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA