Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.473
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(2): 357-371.e13, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610085

RESUMEN

Excitatory neurotransmission meditated by glutamate receptors including N-methyl-D-aspartate receptors (NMDARs) is pivotal to brain development and function. NMDARs are heterotetramers composed of GluN1 and GluN2 subunits, which bind glycine and glutamate, respectively, to activate their ion channels. Despite importance in brain physiology, the precise mechanisms by which activation and inhibition occur via subunit-specific binding of agonists and antagonists remain largely unknown. Here, we show the detailed patterns of conformational changes and inter-subunit and -domain reorientation leading to agonist-gating and subunit-dependent competitive inhibition by providing multiple structures in distinct ligand states at 4 Å or better. The structures reveal that activation and competitive inhibition by both GluN1 and GluN2 antagonists occur by controlling the tension of the linker between the ligand-binding domain and the transmembrane ion channel of the GluN2 subunit. Our results provide detailed mechanistic insights into NMDAR pharmacology, activation, and inhibition, which are fundamental to the brain physiology.


Asunto(s)
Receptores de N-Metil-D-Aspartato/metabolismo , Sitios de Unión , Unión Competitiva , Microscopía por Crioelectrón , Cristalografía por Rayos X , Dimerización , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Glicina/química , Glicina/metabolismo , Humanos , Ligandos , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína , Subunidades de Proteína/agonistas , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
2.
Mol Cell ; 82(17): 3270-3283.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973426

RESUMEN

Proliferating cells exhibit a metabolic phenotype known as "aerobic glycolysis," which is characterized by an elevated rate of glucose fermentation to lactate irrespective of oxygen availability. Although several theories have been proposed, a rationalization for why proliferating cells seemingly waste glucose carbon by excreting it as lactate remains elusive. Using the NCI-60 cell lines, we determined that lactate excretion is strongly correlated with the activity of mitochondrial NADH shuttles, but not proliferation. Quantifying the fluxes of the malate-aspartate shuttle (MAS), the glycerol 3-phosphate shuttle (G3PS), and lactate dehydrogenase under various conditions demonstrated that proliferating cells primarily transform glucose to lactate when glycolysis outpaces the mitochondrial NADH shuttles. Increasing mitochondrial NADH shuttle fluxes decreased glucose fermentation but did not reduce the proliferation rate. Our results reveal that glucose fermentation, a hallmark of cancer, is a secondary consequence of MAS and G3PS saturation rather than a unique metabolic driver of cellular proliferation.


Asunto(s)
Malatos , NAD , Ácido Aspártico/metabolismo , Glucosa/metabolismo , Glucólisis , Ácido Láctico , Malatos/metabolismo , NAD/metabolismo
3.
Mol Cell ; 82(23): 4548-4563.e4, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309015

RESUMEN

Neurotransmission mediated by diverse subtypes of N-methyl-D-aspartate receptors (NMDARs) is fundamental for basic brain functions and development as well as neuropsychiatric diseases and disorders. NMDARs are glycine- and glutamate-gated ion channels that exist as heterotetramers composed of obligatory GluN1 and GluN2(A-D) and/or GluN3(A-B). The GluN2C and GluN2D subunits form ion channels with distinct properties and spatio-temporal expression patterns. Here, we provide the structures of the agonist-bound human GluN1-2C NMDAR in the presence and absence of the GluN2C-selective positive allosteric potentiator (PAM), PYD-106, the agonist-bound GluN1-2A-2C tri-heteromeric NMDAR, and agonist-bound GluN1-2D NMDARs by single-particle electron cryomicroscopy. Our analysis shows unique inter-subunit and domain arrangements of the GluN2C NMDARs, which contribute to functional regulation and formation of the PAM binding pocket and is distinct from GluN2D NMDARs. Our findings here provide the fundamental blueprint to study GluN2C- and GluN2D-containing NMDARs, which are uniquely involved in neuropsychiatric disorders.


Asunto(s)
Ácido Glutámico , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Transmisión Sináptica , Subunidades de Proteína/metabolismo
4.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566880

RESUMEN

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Animales , Núcleo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Interleucina-4/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Cell ; 69(4): 581-593.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452638

RESUMEN

The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.


Asunto(s)
Citosol/metabolismo , Glutamina/metabolismo , Malato Deshidrogenasa/metabolismo , Mitocondrias/patología , NAD/metabolismo , Osteosarcoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Movimiento Celular , Ciclo del Ácido Cítrico , ADN Mitocondrial/genética , Metabolismo Energético , Femenino , Glucosa/metabolismo , Glucólisis , Humanos , Mitocondrias/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Oxidación-Reducción , Células Tumorales Cultivadas
6.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38830760

RESUMEN

NMDA receptors (NMDARs) may be crucial to working memory (WM). Computational models predict that they sustain neural firing and produce associative memory, which may underpin maintaining and binding information, respectively. We test this in patients with antibodies to NMDAR (n = 10, female) and compare them with healthy control participants (n = 55, 20 male, 35 female). Patients were tested after recovery with a task that separates two aspects of WM: sustaining attention and feature binding. Participants had to remember two colored arrows. Then attention was directed to one of them. After a variable delay, they reported the direction of either the same arrow (congruent cue) or of the other arrow (incongruent cue). We asked how congruency affected recall precision and measured types of error. Patients had difficulty in both sustaining attention to an item over time and feature binding. Controls were less precise after longer delays and incongruent cues. In contrast, patients did not benefit from congruent cues at longer delays [group × congruency (long condition); p = 0.041], indicating they could not sustain attention. Additionally, patients reported the wrong item (misbinding errors) more than controls after congruent cues [group × delay (congruent condition), main effect of group; p ≤ 0.001]. Our results suggest NMDARs are critical for both maintaining attention and feature binding.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Atención , Memoria a Corto Plazo , Humanos , Masculino , Femenino , Memoria a Corto Plazo/fisiología , Adulto , Atención/fisiología , Encefalitis Antirreceptor N-Metil-D-Aspartato/fisiopatología , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Adulto Joven , Persona de Mediana Edad , Receptores de N-Metil-D-Aspartato/inmunología , Adolescente , Señales (Psicología)
7.
Hum Genomics ; 18(1): 71, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915066

RESUMEN

OBJECTIVE: To investigate the association between liver enzymes and ovarian cancer (OC), and to validate their potential as biomarkers and their mechanisms in OC. Methods Genome-wide association studies for OC and levels of enzymes such as Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase, and gamma-glutamyltransferase were analyzed. Univariate and multivariate Mendelian randomization (MR), complemented by the Steiger test, identified enzymes with a potential causal relationship to OC. Single-cell transcriptomics from the GSE130000 dataset pinpointed pivotal cellular clusters, enabling further examination of enzyme-encoding gene expression. Transcription factors (TFs) governing these genes were predicted to construct TF-mRNA networks. Additionally, liver enzyme levels were retrospectively analyzed in healthy individuals and OC patients, alongside the evaluation of correlations with cancer antigen 125 (CA125) and Human Epididymis Protein 4 (HE4). RESULTS: A total of 283 single nucleotide polymorphisms (SNPs) and 209 SNPs related to ALP and AST, respectively. Using the inverse-variance weighted method, univariate MR (UVMR) analysis revealed that ALP (P = 0.050, OR = 0.938) and AST (P = 0.017, OR = 0.906) were inversely associated with OC risk, suggesting their roles as protective factors. Multivariate MR (MVMR) confirmed the causal effect of ALP (P = 0.005, OR = 0.938) on OC without reverse causality. Key cellular clusters including T cells, ovarian cells, endothelial cells, macrophages, cancer-associated fibroblasts (CAFs), and epithelial cells were identified, with epithelial cells showing high expression of genes encoding AST and ALP. Notably, TFs such as TCE4 were implicated in the regulation of GOT2 and ALPL genes. OC patient samples exhibited decreased ALP levels in both blood and tumor tissues, with a negative correlation between ALP and CA125 levels observed. CONCLUSION: This study has established a causal link between AST and ALP with OC, identifying them as protective factors. The increased expression of the genes encoding these enzymes in epithelial cells provides a theoretical basis for developing novel disease markers and targeted therapies for OC.


Asunto(s)
Fosfatasa Alcalina , Biomarcadores de Tumor , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple/genética , Análisis de la Célula Individual/métodos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/sangre , Biomarcadores de Tumor/genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/metabolismo , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/sangre , Hígado/patología , Hígado/metabolismo , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , gamma-Glutamiltransferasa/genética , gamma-Glutamiltransferasa/sangre , Antígeno Ca-125/genética , Regulación Neoplásica de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de la Membrana/genética , Persona de Mediana Edad
8.
Rev Med Virol ; 34(4): e2564, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923215

RESUMEN

Liver involvement is an unusual yet frequently overlooked dengue complication. Pivotal for an efficient clinical management, the early diagnosis of dengue-associated liver involvement relies on an accurate description of its clinical and biological characteristics, its prognosis factors, its association with severe dengue and its clinical management. We conducted a systematic review by searching PubMed and Web of Science databases for original case reports, cohort and cross-sectional studies reporting the clinical and/or biological features of dengue-associated liver involvement. The study was registered in PROSPERO (CRD42021262657). Of the 2552 articles identified, 167 were included. Dengue-associated liver involvement was characterised by clinical features including abdominal pain, hepatomegaly, jaundice, nausea/vomiting, and an echogenic liver exhibiting hepatocellular necrosis and minimal inflammation. Elevated Aspartate Aminotransferase and Alanine Aminotransferase but also elevated bilirubin, Alkaline Phosphatase, gamma-glutamyl transferase, increased International Normalised Ratio, creatinine and creatine kinase, lower albumin and prolonged prothrombin and activated partial thromboplastin time were prevalent in dengue-associated liver involvement. Cardiovascular and haematological systems were frequently affected, translating in a strong association with severe dengue. Liver involvement was more common in males and older adults. It was associated with dengue virus serotype-2 and secondary infections. Early paracetamol intake increased the risk of liver involvement, which clinical management was mostly conservative. In conclusion, this systematic review demonstrates that early monitoring of transaminases, clinical assessment, and ultrasound examination allow an efficient diagnosis of dengue-associated liver involvement, enabling the early identification and management of severe dengue.


Asunto(s)
Dengue , Humanos , Dengue/diagnóstico , Dengue/complicaciones , Dengue/patología , Dengue/virología , Virus del Dengue , Hígado/patología , Hígado/virología , Hígado/diagnóstico por imagen , Hepatopatías/virología , Hepatopatías/etiología , Hepatopatías/patología , Hepatopatías/diagnóstico
9.
Brain ; 147(5): 1653-1666, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38380699

RESUMEN

GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate the tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52 weeks. Primary end points included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life Inventory, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months of treatment. Secondary outcomes included seizure frequency and intensity reduction and EEG improvement. Assessments were performed 3 months and 1 day before starting treatment and 1, 3, 6 and 12 months after beginning the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Their clinical phenotypes showed 91% had intellectual disability (61% severe), 83% had behavioural problems, 78% had movement disorders and 58% had epilepsy. Based on the Vineland Adaptive Behavior Composite standard scores, nine children were classified as mildly impaired (cut-off score > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in the Daily Living Skills domain (P = 0035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. The Growth Scale Values in the Cognitive subdomain of the Bayley-III Scale showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068), regardless of severity. L-serine normalized the EEG pattern in five children and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve adaptive behaviour, motor function and quality of life, with a better response to the treatment in mild phenotypes.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Serina , Humanos , Femenino , Masculino , Niño , Preescolar , Adolescente , Serina/uso terapéutico , Serina/genética , Receptores de N-Metil-D-Aspartato/genética , Encefalopatías/genética , Encefalopatías/tratamiento farmacológico , Resultado del Tratamiento , Calidad de Vida
10.
J Neurosci ; 43(31): 5593-5607, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37451981

RESUMEN

Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with µ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.


Asunto(s)
Neuralgia , Receptores de N-Metil-D-Aspartato , Masculino , Femenino , Ratas , Ratones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Analgésicos Opioides/efectos adversos , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Ratas Sprague-Dawley , Morfina/efectos adversos , Asta Dorsal de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo
11.
J Biol Chem ; 299(8): 105033, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437886

RESUMEN

Polyamines are positively charged alkylamines ubiquitous among eukaryotes, prokaryotes, and archaea. Humans obtain polyamines through dietary intake, metabolic production, or uptake of polyamines made by gut microbes. The polyamine biosynthetic pathway used by most gut microbes differs from that used by human cells. This alternative pathway employs carboxyspermidine dehydrogenase (CASDH), an enzyme with limited characterization. Here, we solved a 1.94 Å X-ray crystal structure of Bacteroides fragilis CASDH by molecular replacement. BfCASDH is composed of three domains with a fold similar to saccharopine dehydrogenase but with a distinct active site arrangement. Using steady-state methods, we determined kcat and kcat/Km for BfCASDH and Clostridium leptum CASDH using putrescine, diaminopropane, aspartate semi-aldehyde, NADH, and NADPH as substrates. These data revealed evidence of cooperativity in BfCASDH. Putrescine is the likely polyamine substrate and NADPH is the coenzyme used to complete the reaction, forming carboxyspermidine as a product. These data provide the first kinetic characterization of CASDH-a key enzyme in the production of microbial polyamines.


Asunto(s)
Bacteroides fragilis , Oxidorreductasas , Humanos , NADP , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Poliaminas/metabolismo , Putrescina , Espermidina/metabolismo , Bacteroides fragilis/enzimología
12.
J Biol Chem ; 299(11): 105275, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741457

RESUMEN

It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.


Asunto(s)
Aminoácidos , Epitelio Pigmentado de la Retina , Animales , Humanos , Ratones , Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Glutamatos/metabolismo , Glutamina/metabolismo , Nitrógeno/metabolismo , Prolina/metabolismo , Prolina Oxidasa/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
13.
J Biol Chem ; 299(11): 105264, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37734557

RESUMEN

Hybrid insulin peptides (HIPs) form in beta-cells when insulin fragments link to other peptides through a peptide bond. HIPs contain nongenomic amino acid sequences and have been identified as targets for autoreactive T cells in type 1 diabetes. A subgroup of HIPs, in which N-terminal amine groups of various peptides are linked to aspartic acid residues of insulin C-peptide, was detected through mass spectrometry in pancreatic islets. Here, we investigate a novel mechanism that leads to the formation of these HIPs in human and murine islets. Our research herein shows that these HIPs form spontaneously in beta-cells through a mechanism involving an aspartic anhydride intermediate. This mechanism leads to the formation of a regular HIP containing a standard peptide bond as well as a HIP-isomer containing an isopeptide bond by linkage to the carboxylic acid side chain of the aspartic acid residue. We used mass spectrometric analyses to confirm the presence of both HIP isomers in islets, thereby validating the occurrence of this novel reaction mechanism in beta-cells. The spontaneous formation of new peptide bonds within cells may lead to the development of neoepitopes that contribute to the pathogenesis of type 1 diabetes as well as other autoimmune diseases.


Asunto(s)
Células Secretoras de Insulina , Insulina , Péptidos , Animales , Humanos , Ratones , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Péptidos/análisis , Péptidos/metabolismo , Técnicas In Vitro , Espectrometría de Masas
14.
J Biol Chem ; 299(6): 104706, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061000

RESUMEN

Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating ß-adrenergic receptors (ßARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such ßAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that ßAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, ß-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for ßAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required ß2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Potenciación a Largo Plazo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacología , Depresión Sináptica a Largo Plazo/fisiología , Hipocampo/metabolismo , Sinapsis/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
J Neurochem ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193789

RESUMEN

We have previously reported a failure of recovery of synaptic function in the CA1 region of acute hippocampal slices from mice with a conditional neuronal knockout (KO) of GLT-1 (EAAT2, Slc1A2) driven by synapsin-Cre (synGLT-1 KO). The failure of recovery of synaptic function is due to excitotoxic injury. We hypothesized that changes in mitochondrial metabolism contribute to the heightened vulnerability to excitotoxicity in the synGLT-1 KO mice. We found impaired flux of carbon from 13C-glucose into the tricarboxylic acid cycle in synGLT-1 KO cortical and hippocampal slices compared with wild-type (WT) slices. In addition, we found downregulation of the neuronal glucose transporter GLUT3 in both genotypes. Flux of carbon from [1,2-13C]acetate, thought to be astrocyte-specific, was increased in the synGLT-KO hippocampal slices but not cortical slices. Glycogen stores, predominantly localized to astrocytes, are rapidly depleted in slices after cutting, and are replenished during ex vivo incubation. In the synGLT-1 KO, replenishment of glycogen stores during ex vivo incubation was compromised. These results suggest both neuronal and astrocytic metabolic perturbations in the synGLT-1 KO slices. Supplementing incubation medium during recovery with 20 mM D-glucose normalized glycogen replenishment but had no effect on recovery of synaptic function. In contrast, 20 mM non-metabolizable L-glucose substantially improved recovery of synaptic function, suggesting that D-glucose metabolism contributes to the excitotoxic injury in the synGLT-1 KO slices. L-lactate substitution for D-glucose did not promote recovery of synaptic function, implicating mitochondrial metabolism. Consistent with this hypothesis, phosphorylation of pyruvate dehydrogenase, which decreases enzyme activity, was increased in WT slices during the recovery period, but not in synGLT-1 KO slices. Since metabolism of glucose by the mitochondrial electron transport chain is associated with superoxide production, we tested the effect of drugs that scavenge and prevent superoxide production. The superoxide dismutase/catalase mimic EUK-134 conferred complete protection and full recovery of synaptic function. A site-specific inhibitor of complex III superoxide production, S3QEL-2, was also protective, but inhibitors of NADPH oxidase were not. In summary, we find that the failure of recovery of synaptic function in hippocampal slices from the synGLT-1 KO mouse, previously shown to be due to excitotoxic injury, is caused by production of superoxide by mitochondrial metabolism.

16.
Mol Pain ; 20: 17448069231225810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148592

RESUMEN

The number of patients with neuropathic pain is increasing in recent years, but drug treatments for neuropathic pain have a low success rate and often come with significant side effects. Consequently, the development of innovative therapeutic strategies has become an urgent necessity. Kilohertz High Frequency Electrical Stimulation (KHES) offers pain relief without inducing paresthesia. However, the specific therapeutic effects of KHES on neuropathic pain and its underlying mechanisms remain ambiguous, warranting further investigation. In our previous study, we utilized the Gene Expression Omnibus (GEO) database to identify datasets related to neuropathic pain mice. The majority of the identified pathways were found to be associated with inflammatory responses. From these pathways, we selected the transient receptor potential vanilloid-1 (TRPV1) and N-methyl-D-aspartate receptor-2B (NMDAR2B) pathway for further exploration. Mice were randomly divided into four groups: a Sham group, a Sham/KHES group, a chronic constriction injury of the sciatic nerve (CCI) group, and a CCI/KHES stimulation group. KHES administered 30 min every day for 1 week. We evaluated the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL). The expression of TRPV1 and NMDAR2B in the spinal cord were analyzed using quantitative reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence assay. KHES significantly alleviated the mechanical and thermal allodynia in neuropathic pain mice. KHES effectively suppressed the expression of TRPV1 and NMDAR2B, consequently inhibiting the activation of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA1) in the spinal cord. The administration of the TRPV1 pathway activator partially reversed the antinociceptive effects of KHES, while the TRPV1 pathway inhibitor achieved analgesic effects similar to KHES. KHES inhibited the activation of spinal dorsal horn glial cells, especially astrocytes and microglia, by inhibiting the activation of the TRPV1/NMDAR2B signaling pathway, ultimately alleviating neuropathic pain.


Asunto(s)
Antineoplásicos , Neuralgia , Animales , Ratones , Antineoplásicos/uso terapéutico , Constricción , Estimulación Eléctrica , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Nervio Ciático/lesiones , Transducción de Señal , Médula Espinal/metabolismo
17.
Mol Pain ; 20: 17448069241230258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246915

RESUMEN

The anterior cingulate cortex (ACC) is a key cortical area for pain perception, emotional fear and anxiety. Cortical excitation is thought to be the major mechanism for chronic pain and its related emotional disorders such as anxiety and depression. GluN2B (or called NR2B) containing NMDA receptors play critical roles for such excitation. Not only does the activation of GluN2B contributes to the induction of the postsynaptic form of LTP (post-LTP), long-term upregulation of GluN2B subunits through tyrosine phosphorylation were also detected after peripheral injury. In addition, it has been reported that presynaptic NMDA receptors may contribute to the modulation of the release of glutamate from presynaptic terminals in the ACC. It is believed that inhibiting subtypes of NMDA receptors and/or downstream signaling proteins may serve as a novel therapeutic mechanism for future treatment of chronic pain, anxiety, and depression.


Asunto(s)
Dolor Crónico , Giro del Cíngulo , Humanos , Giro del Cíngulo/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Dolor Crónico/metabolismo , Sinapsis/metabolismo , Potenciación a Largo Plazo/fisiología
18.
BMC Plant Biol ; 24(1): 680, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020266

RESUMEN

Hydrogen sulfide (H2S) has emerged as a novel endogenous gas signaling molecule, joining the ranks of nitric oxide (NO) and carbon monoxide (CO). Recent research has highlighted its involvement in various physiological processes, such as promoting root organogenesis, regulating stomatal movement and photosynthesis, and enhancing plant growth, development, and stress resistance. Tobacco, a significant cash crop crucial for farmers' economic income, relies heavily on root development to affect leaf growth, disease resistance, chemical composition, and yield. Despite its importance, there remains a scarcity of studies investigating the role of H2S in promoting tobacco growth. This study exposed tobacco seedlings to different concentrations of NaHS (an exogenous H2S donor) - 0, 200, 400, 600, and 800 mg/L. Results indicated a positive correlation between NaHS concentration and root length, wet weight, root activity, and antioxidant enzymatic activities (CAT, SOD, and POD) in tobacco roots. Transcriptomic and metabolomic analyses revealed that treatment with 600 mg/L NaHS significantly effected 162 key genes, 44 key enzymes, and two metabolic pathways (brassinosteroid synthesis and aspartate biosynthesis) in tobacco seedlings. The addition of exogenous NaHS not only promoted tobacco root development but also potentially reduced pesticide usage, contributing to a more sustainable ecological environment. Overall, this study sheds light on the primary metabolic pathways involved in tobacco root response to NaHS, offering new genetic insights for future investigations into plant root development.


Asunto(s)
Nicotiana , Raíces de Plantas , Sulfuros , Nicotiana/genética , Nicotiana/efectos de los fármacos , Nicotiana/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Sulfuros/farmacología , Transcriptoma/efectos de los fármacos , Metabolómica , Redes y Vías Metabólicas/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
19.
Clin Exp Immunol ; 215(1): 27-36, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37724585

RESUMEN

The overlapping of two or more types of neural autoantibodies in one patient has increasingly been documented in recent years. The coexistence of myelin oligodendrocyte glycoprotein (MOG) and N-methyl-d-aspartate receptor (NMDAR) antibodies is most common, which leads to a unique condition known as the MOG antibody and NMDAR antibody overlapping syndrome (MNOS). Here, we have reviewed the pathogenesis, clinical manifestations, paraclinical features, and treatment of MNOS. Forty-nine patients with MNOS were included in this study. They were young males with a median onset age of 23 years. No tumors were observed in the patients, and 24 of them reported prodromal symptoms. The most common clinical presentations were psychiatric symptoms (35/49) and seizures (25/49). Abnormalities on magnetic resonance imaging involved the brainstem (11/49), cerebellum (9/49), and parietal lobe (9/49). Most patients mostly responded to immunotherapy and had a good long-term prognosis. However, the overall recurrence rate of MNOS was higher than that of mono antibody-positive diseases. The existence of concurrent NMDAR antibodies should be suspected in patients with MOG antibody-associated disease having psychiatric symptoms, seizures, movement disorders, or autonomic dysfunction. Similarly, serum MOG antibody testing should be performed when patients with anti-NMDAR encephalitis present with atypical clinical manifestations, such as visual impairment and limb weakness, and neuroradiological findings, such as optic nerve, spinal cord, or infratentorial involvement or meningeal enhancement. Early detection of the syndrome and prompt treatment can be beneficial for these patients, and maintenance immunosuppressive therapy is recommended due to the high overall recurrence rate of the syndrome.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato , Humanos , Masculino , Adulto Joven , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Encefalitis Antirreceptor N-Metil-D-Aspartato/complicaciones , Autoanticuerpos , Glicoproteína Mielina-Oligodendrócito , Convulsiones/complicaciones , Síndrome
20.
Appl Environ Microbiol ; 90(4): e0015524, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456673

RESUMEN

Humans and mammals need to ingest essential amino acids (EAAs) for protein synthesis. In addition to their importance as nutrients, EAAs are involved in brain homeostasis. However, elderly people are unable to efficiently consume EAAs from their daily diet due to reduced appetite and variations in the contents of EAAs in foods. On the other hand, strains of the yeast Saccharomyces cerevisiae that accumulate EAAs would enable elderly people to intakegest adequate amounts of EAAs and thus might slow down the neurodegenerative process, contributing to the extension of their healthy lifespan. In this study, we isolated a mutant (strain HNV-5) that accumulates threonine, an EAA, derived from a diploid laboratory yeast by conventional mutagenesis. Strain HNV-5 carries a novel mutation in the HOM3 gene encoding the Ala462Thr variant of aspartate kinase (AK). Enzymatic analysis revealed that the Ala462Thr substitution significantly decreased the sensitivity of AK activity to threonine feedback inhibition even in the presence of 50 mM threonine. Interestingly, Ala462Thr substitution did not affect the catalytic ability of Hom3, in contrast to previously reported amino acid substitutions that resulted in reduced sensitivity to threonine feedback inhibition. Furthermore, yeast cells expressing the Ala462Thr variant showed an approximately threefold increase in intracellular threonine content compared to that of the wild-type Hom3. These findings will be useful for the development of threonine-accumulating yeast strains that may improve the quality of life in elderly people.IMPORTANCEFor humans and mammals, essential amino acids (EAAs) play an important role in maintaining brain function. Therefore, increasing the intake of EAAs by using strains of the yeast Saccharomyces cerevisiae that accumulate EAAs may inhibit neurodegeneration in elderly people and thus contribute to extending healthy lifespan and improving their quality of life. Threonine, an EAA, is synthesized from aspartate. Aspartate kinase (AK) catalyzes the first step in threonine biosynthesis and is subject to allosteric regulation by threonine. Here, we isolated a threonine-accumulating mutant of S. cerevisiae by conventional mutagenesis and identified a mutant gene encoding a novel variant of AK. In contrast to previously isolated variants, the Hom3 variant exhibited AK activity that was insensitive to feedback inhibition by threonine but retained its catalytic ability. This resulted in increased production of threonine in yeast. These findings open up the possibility for the rational design of AK to increase threonine productivity in yeast.


Asunto(s)
Aspartato Quinasa , Saccharomyces cerevisiae , Humanos , Animales , Anciano , Saccharomyces cerevisiae/metabolismo , Treonina , Aspartato Quinasa/química , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Retroalimentación , Calidad de Vida , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA