RESUMEN
Anisotropic hopping in a toy Hofstadter model was recently invoked to explain a rich and surprising Landau spectrum measured in twisted bilayer graphene away from the magic angle. Suspecting that such anisotropy could arise from unintended uniaxial strain, we extend the Bistritzer-MacDonald model to include uniaxial heterostrain and present a detailed analysis of its impact on band structure and magnetotransport. We find that such strain strongly influences band structure, shifting the three otherwise-degenerate van Hove points to different energies. Coupled to a Boltzmann magnetotransport calculation, this reproduces previously unexplained nonsaturating [Formula: see text] magnetoresistance over broad ranges of density near filling [Formula: see text] and predicts subtler features that had not been noticed in the experimental data. In contrast to these distinctive signatures in longitudinal resistivity, the Hall coefficient is barely influenced by strain, to the extent that it still shows a single sign change on each side of the charge neutrality point-surprisingly, this sign change no longer occurs at a van Hove point. The theory also predicts a marked rotation of the electrical transport principal axes as a function of filling even for fixed strain and for rigid bands. More careful examination of interaction-induced nematic order versus strain effects in twisted bilayer graphene could thus be in order.
RESUMEN
SignificanceWhen two sheets of graphene are twisted to the magic angle of 1.1∘, the resulting flat moiré bands can host exotic correlated electronic states such as superconductivity and ferromagnetism. Here, we show transport properties of a twisted bilayer graphene device at 1.38∘, far enough above the magic angle that we do not expect exotic correlated states. Instead, we see several unusual behaviors in the device's resistivity upon tuning both charge carrier density and perpendicular magnetic field. We can reproduce these behaviors with a surprisingly simple model based on Hofstadter's butterfly. These results shed light on the underlying properties of twisted bilayer graphene.
RESUMEN
Cryogenic field-effect transistors (FETs) offer great potential for applications, the most notable example being classical control electronics for quantum information processors. For the latter, on-chip FETs with low power consumption are crucial. This requires operating voltages in the millivolt range, which are only achievable in devices with ultrasteep subthreshold slopes. However, in conventional cryogenic metal-oxide-semiconductor (MOS)FETs based on bulk material, the experimentally achieved inverse subthreshold slopes saturate around a few mV/dec due to disorder and charged defects at the MOS interface. FETs based on two-dimensional materials offer a promising alternative. Here, we show that FETs based on Bernal stacked bilayer graphene encapsulated in hexagonal boron nitride and graphite gates exhibit inverse subthreshold slopes of down to 250 µV/dec at 0.1 K, approaching the Boltzmann limit. This result indicates an effective suppression of band tailing in van der Waals heterostructures without bulk interfaces, leading to superior device performance at cryogenic temperature.
RESUMEN
On a two-dimensional crystal, a "superlattice" with nanometer-scale periodicity can be imposed to tune the Bloch electron spectrum, enabling novel physical properties inaccessible in the original crystal. While creating 2D superlattices by means of nanopatterned electric gates has been studied for band structure engineering in recent years, evidence of electron correlationsâwhich drive many problems at the forefront of physics researchâremains to be uncovered. In this work, we demonstrate signatures of a correlated insulator phase in Bernal-stacked bilayer graphene modulated by a gate-defined superlattice potential, manifested as resistance peaks centered at integer multiples of single electron per superlattice unit cell carrier densities. The observation is consistent with the formation of a stack of flat low-energy bands due to the superlattice potential combined with inversion symmetry breaking. Our work paves the way to custom-designed superlattices for studying band structure engineering and strongly correlated electrons in 2D materials.
RESUMEN
We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. Additionally, in the scenario of layer-discriminating contacts, the third lead can serve as a current probe capable of detecting different handedness even in the absence of a magnetic field. In a complementary configuration, applying opposite voltages on the two layers of the third lead gives rise to a chiral (super)current in the absence of a source-drain voltage whose direction is determined by its chirality.
RESUMEN
The superconducting coplanar waveguide (SCPW) cavity plays an essential role in various areas like superconducting qubits, parametric amplifiers, radiation detectors, and studying magnon-photon and photon-phonon coupling. Despite its wide-ranging applications, the use of SCPW cavities to study various van der Waals 2D materials has been relatively unexplored. The resonant modes of the SCPW cavity exquisitely sense the dielectric environment. In this work, we measure the charge compressibility of bilayer graphene coupled to a half-wavelength SCPW cavity. Our approach provides a means to detect subtle changes in the capacitance of the bilayer graphene heterostructure, which depends on the compressibility of bilayer graphene, manifesting as shifts in the resonant frequency of the cavity. This method holds promise for exploring a wide class of van der Waals 2D materials, including transition metal dichalcogenides (TMDs) and their moiré, where DC transport measurement is challenging.
RESUMEN
We implement circuit quantum electrodynamics (cQED) with quantum dots in bilayer graphene, a maturing material platform that can host long-lived spin and valley states. Our device combines a high-impedance (Zr ≈ 1 kΩ) superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure. Electric dipole coupling between the subsystems allows the resonator to sense the electric susceptibility of the double quantum dot from which we reconstruct its charge stability diagram. We achieve sensitive and fast detection of the interdot transition with a signal-to-noise ratio of 3.5 within 1 µs integration time. The charge-photon interaction is quantified in the dispersive and resonant regimes by comparing the resonator response to input-output theory, yielding a coupling strength of g/2π = 49.7 MHz. Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
RESUMEN
Van Hove singularities enhance many-body interactions and induce collective states of matter ranging from superconductivity to magnetism. In magic-angle twisted bilayer graphene, van Hove singularities appear at low energies and are malleable with density, leading to a sequence of Lifshitz transitions and resets observable in Hall measurements. However, without a magnetic field, linear transport measurements have limited sensitivity to the band's topology. Here, we utilize nonlinear longitudinal and transverse transport measurements to probe these unique features in twisted bilayer graphene at zero magnetic field. We demonstrate that the nonlinear responses, induced by the Berry curvature dipole and extrinsic scattering processes, intricately map the Fermi surface reconstructions at various fillings. Importantly, our experiments highlight the intrinsic connection of these features with the moiré bands. Beyond corroborating the insights from linear Hall measurements, our findings establish nonlinear transport as a pivotal tool for probing band topology and correlated phenomena.
RESUMEN
Electron collimation via a graphene p-n junction allows electrostatic control of ballistic electron trajectories akin to that of an optical circuit. Similar manipulation of novel correlated electronic phases in twisted-bilayer graphene (tBLG) can provide additional probes to the underlying physics and device components toward advanced quantum electronics. In this work, we demonstrate collimation of the electron flow via gate-defined moiré barriers in a tBLG device, utilizing the band-insulator gap of the moiré superlattice. A single junction can be tuned to host a chosen combination of conventional pseudo barrier and moiré tunnel barriers, from which we demonstrate improved collimation efficiency. By measuring transport through two consecutive moiré collimators separated by 1 µm, we demonstrate evidence of electron collimation in tBLG in the presence of realistic twist-angle inhomogeneity.
RESUMEN
We present experimental findings on electron-electron scattering in two-dimensional moiré heterostructures with a tunable Fermi wave vector, reciprocal lattice vector, and band gap. We achieve this in high-mobility aligned heterostructures of bilayer graphene (BLG) and hBN. Around the half-full point, the primary contribution to the resistance of these devices arises from Umklapp electron-electron (Uee) scattering, making the resistance of graphene/hBN moiré devices significantly larger than that of non-aligned devices (where Uee is forbidden). We find that the strength of Uee scattering follows a universal scaling with Fermi energy and is nonmonotonically dependent on the superlattice period. The Uee scattering can be tuned with the electric field and is affected by layer polarization of BLG. It has a strong particle-hole asymmetry; the resistance when the chemical potential is in the conduction band is significantly lower than when it is in the valence band, making the electron-doped regime more practical for potential applications.
RESUMEN
Double-layer quantum systems are promising platforms for realizing novel quantum phases. Here, we report a study of quantum oscillations (QOs) in a weakly coupled double-layer system composed of a large-angle twisted-double-bilayer graphene (TDBG). We quantify the interlayer coupling strength by measuring the interlayer capacitance from the QOs pattern at low temperatures, revealing electron-hole asymmetry. At high temperatures when SdHOs are thermally smeared, we observe resistance peaks when Landau levels (LLs) from two moiré minivalleys are aligned, regardless of carrier density; eventually, it results in a 2-fold increase of oscillating frequency in D, serving as compelling evidence of the magneto-intersub-band oscillations (MISOs) in double-layer systems. The temperature dependence of MISOs suggests that electron-electron interactions play a crucial role and the scattering times obtained from MISO thermal damping are correlated with the interlayer coupling strength. Our study reveals intriguing interplays among Landau quantization, moiré band structure, and scatterings.
RESUMEN
Twisted bilayer graphene (tBLG) possesses intriguing physical properties including unconventional superconductivity, enhanced light-matter interaction due to the formation of van Hove singularities (vHS), and a divergence of density of states in the electronic band structures. The vHS energy band gap provides optical resonant transition channels that can be tuned by the twist angle and interlayer coupling. Raman spectroscopy provides rich information on the vHS structure of tBLG. Here, we report the discovery of an ultralow-frequency Raman mode at â¼49 cm-1 in tBLG. This mode is assigned to the combination of ZA (an out-of-plane acoustic phonon) and TA (a transverse acoustic phonon) phonons, and the Raman scattering is proposed to occur at the so-called mini-valley. This mode is found to be particularly sensitive to the change in vHS in tBLG. Our findings may deepen the understanding of Raman scattering in tBLG and help to reveal vHS-related electron-phonon interactions in tBLG.
RESUMEN
Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moiré superlattice. Notably, the observation of correlated insulators and superconductivity, and the interplay between these phases have garnered significant attention. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moiré superlattices with myriad properties. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moiré systems. Additionally, we discuss multiple phases recently observed in non-moiré multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moiré materials.
RESUMEN
The layer-by-layer stacked van der Waals structures (termed vdW hetero/homostructures) offer a new paradigm for materials design-their physical properties can be tuned by the vertical stacking sequence as well as by adding a mechanical twist, stretch, and hydrostatic pressure to the atomic structure. In particular, simple twisting and stacking of two layers of graphene can form a uniform and ordered Moiré superlattice, which can effectively modulate the electrons of graphene layers and lead to the discovery of unconventional superconductivity and strong correlations. However, the twist angle of twisted bilayer graphene (tBLG) is almost unchangeable once the interlayer stacking is determined, while applying mechanical elastic strain provides an alternative way to deeply regulate the electronic structure by controlling the lattice spacing and symmetry. In this review, diverse experimental advances are introduced in straining tBLG by in-plane and out-of-plane modes, followed by the characterizations and calculations toward quantitatively tuning the strain-engineered electronic structures. It is further discussed that the structural relaxation in strained Moiré superlattice and its influence on electronic structures. Finally, the conclusion entails prospects for opportunities of strained twisted 2D materials, discussions on existing challenges, and an outlook on the intriguing emerging field, namely "strain-twistronics".
RESUMEN
Bilayer graphene (Bl-Gr) and sulphur-doped graphene (S-Gr) have been integrated with LiTaO3 surface acustic wave (SAW) sensors to enhance the performance of NO2 detection at room temperature. The sensitivity of the Bl-Gr SAW sensors toward NO2, measured at room temperature, was 0.29º/ppm, with a limit of detection of 0.068 ppm. The S-Gr SAW sensors showed 0.19º/ppm sensitivity and a limit of detection of 0.140 ppm. The origin of these high sensitivities was attributed to the mass loading and elastic effects of the graphene-based sensing materials, with surface changes caused by the absorption of the NO2 molecules on the sensing films. Although there are no significant differences regarding the sensitivity and detection limit of the two types of sensors, the measurements in the presence of interferent gases and various humidity conditions outlined much better selectivity and sensing performances towards NO2 gas for the Bl-Gr SAW sensors.
RESUMEN
We report multiterminal measurements in a ballistic bilayer graphene (BLG) channel, where multiple spin- and valley-degenerate quantum point contacts (QPCs) are defined by electrostatic gating. By patterning QPCs of different shapes along different crystallographic directions, we study the effect of size quantization and trigonal warping on transverse electron focusing (TEF). Our TEF spectra show eight clear peaks with comparable amplitudes and weak signatures of quantum interference at the lowest temperature, indicating that reflections at the gate-defined edges are specular, and transport is phase coherent. The temperature dependence of the focusing signal shows that, despite the small gate-induced bandgaps in our sample (â²45 meV), several peaks are visible up to 100 K. The achievement of specular reflection, which is expected to preserve the pseudospin information of the electron jets, is promising for the realization of ballistic interconnects for new valleytronic devices.
RESUMEN
Twisted bilayer graphene provides an ideal solid-state model to explore correlated material properties and opportunities for a variety of optoelectronic applications, but reliable, fast characterization of the twist angle remains a challenge. Here we introduce spectroscopic ellipsometric contrast microscopy (SECM) as a tool for mapping twist angle disorder in optically resonant twisted bilayer graphene. We optimize the ellipsometric angles to enhance the image contrast based on measured and calculated reflection coefficients of incident light. The optical resonances associated with van Hove singularities correlate well to Raman and angle-resolved photoelectron emission spectroscopy, confirming the accuracy of SECM. The results highlight the advantages of SECM, which proves to be a fast, nondestructive method for characterization of twisted bilayer graphene over large areas, unlocking process, material, and device screening and cross-correlative measurement potential for bilayer and multilayer materials.
RESUMEN
Bilayer graphene (BLG) was recently shown to host a band-inverted phase with unconventional topology emerging from the Ising-type spin-orbit interaction (SOI) induced by the proximity of transition metal dichalcogenides with large intrinsic SOI. Here, we report the stabilization of this band-inverted phase in BLG symmetrically encapsulated in tungsten diselenide (WSe2) via hydrostatic pressure. Our observations from low temperature transport measurements are consistent with a single particle model with induced Ising SOI of opposite sign on the two graphene layers. To confirm the strengthening of the inverted phase, we present thermal activation measurements and show that the SOI-induced band gap increases by more than 100% due to the applied pressure. Finally, the investigation of Landau level spectra reveals the dependence of the level-crossings on the applied magnetic field, which further confirms the enhancement of SOI with pressure.
RESUMEN
Realization of high-quality van der Waals (vdWs) heterostructures by stacking two-dimensional (2D) layers requires atomically clean interfaces. Because of strong adhesion between the constituent layers, the vdWs forces could drive trapped contaminants together into submicron-size "bubbles", which leaves large interfacial areas atomically clean. Here, we study the kinetics of nanobubbles in tiny-angle twisted bilayer graphene (TBG) and our results reveal a substantial influence of the moiré superlattice on the motion of nanoscale interfacial substances. Our experiments indicate that the bubbles will mainly move along the triangular network of domain boundaries in the tiny-angle TBG when the sizes of the bubbles are comparable to that of an AA-stacking region. When the size of the bubble is smaller than that of an AA-stacking region, the bubble becomes motionless and is fixed in the AA-stacking region, because of its large out-of-plane corrugation.
RESUMEN
Photoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p-n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p-n junctions. We find a strong positive contribution from junctions to resistance, temperature resistance coefficient, and photoresistivity at cryogenic temperatures T â¼ 20 K. The contribution to these quantities from junctions exceeds strongly the bulk values at uniform channel doping even at small band gaps of â¼10 meV. We further show that positive junction photoresistance is a hallmark of interband tunneling, and not of intraband thermionic conduction. Our results point to the possibility of creating various interband tunneling devices based on bilayer graphene, including steep-switching transistors and selective sensors.