Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889247

RESUMEN

BACKGROUND: The mRNA-1345 vaccine demonstrated efficacy against RSV disease with acceptable safety in adults ≥60 years in the ConquerRSV trial. Here, humoral immunogenicity results from the trial are presented. METHODS: This phase 2/3 trial randomly assigned adults (≥60 years) to mRNA-1345 50-µg encoding prefusion F (preF) glycoprotein (n = 17,793) vaccine or placebo (n = 17,748). RSV-A and RSV-B neutralizing antibody (nAb) and preF binding antibody (bAb) levels at baseline and day 29 post-vaccination were assessed in a per-protocol immunogenicity subset ([PPIS]; mRNA-1345, n = 1515; placebo, n = 333). RESULTS: Day 29 nAb geometric mean titers (GMTs) increased 8.4-fold against RSV-A and 5.1-fold against RSV-B from baseline. Seroresponses (4-fold rise from baseline) in the mRNA-1345 groups were 74.2% and 56.5% for RSV-A and RSV-B, respectively. Baseline GMTs were lower among participants who met the seroresponse criteria than those who did not. mRNA-1345 induced preF bAbs at day 29, with a pattern similar to nAbs. Day 29 antibody responses across demographic and risk subgroups were generally consistent with the overall PPIS. CONCLUSION: mRNA-1345 enhanced RSV-A and RSV-B nAbs and preF bAbs in adults (≥60 years) across various subgroups, including those at risk for severe disease, consistent with its demonstrated efficacy in the prevention of RSV disease.

2.
J Infect Dis ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37781879

RESUMEN

A GII.2 outbreak in an efficacy study of a bivalent virus-like particle (VLP) norovirus vaccine, TAK-214, in healthy US adults provided an opportunity to examine GII.4 homotypic vs. GII.2 heterotypic responses to vaccination and infection. Three serological assays (VLP-binding, histoblood group antigen-blocking, and neutralizing) were performed for each genotype. Results were highly correlated within a genotype but not between genotypes. Although the vaccine provided protection from GII.2-associated disease, little GII.2-specific neutralization occurred after vaccination. Choice of antibody assay can affect assessments of human norovirus vaccine immunogenicity.

3.
Virol J ; 20(1): 200, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658454

RESUMEN

BACKGROUND: Measuring specific anti-SARS-CoV-2 antibodies has become one of the main epidemiological tools to survey the ongoing SARS-CoV-2 pandemic, but also vaccination response. The WHO made available a set of well-characterized samples derived from recovered individuals to allow normalization between different quantitative anti-Spike assays to defined Binding Antibody Units (BAU). METHODS: To assess sero-responses longitudinally, a cohort of ninety-nine SARS-CoV-2 RT-PCR positive subjects was followed up together with forty-five vaccinees without previous infection but with two vaccinations. Sero-responses were evaluated using a total of six different assays: four measuring anti-Spike proteins (converted to BAU), one measuring anti-Nucleocapsid proteins and one SARS-CoV-2 surrogate virus neutralization. Both cohorts were evaluated using the Euroimmun Anti-SARS-CoV-2-ELISA anti-S1 IgG and the Roche Elecsys Anti-SARS-CoV-2 anti-S1 assay. RESULTS: In SARS-CoV-2-convalesce subjects, the BAU-sero-responses of Euroimmun Anti-SARS-CoV-2-ELISA anti-S1 IgG and Roche Elecsys Anti-SARS-CoV-2 anti-S1 peaked both at 47 (43-51) days, the first assay followed by a slow decay thereafter (> 208 days), while the second assay not presenting any decay within one year. Both assay values in BAUs are only equivalent a few months after infection, elsewhere correction factors up to 10 are necessary. In contrast, in infection-naive vaccinees the assays perform similarly. CONCLUSION: The results of our study suggest that the establishment of a protective correlate or vaccination booster recommendation based on different assays, although BAU-standardised, is still challenging. At the moment the characteristics of the available assays used are not related, and the BAU-standardisation is unable to correct for that.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Anticuerpos Antivirales , Bioensayo , Inmunoglobulina G
4.
Clin Chem Lab Med ; 61(9): 1670-1675, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36999398

RESUMEN

OBJECTIVES: The BNT162b2 messenger RNA vaccine is highly effective in reducing COVID-19 infection, hospitalization and death. However, many subjects developed a breakthrough infection despite a full vaccination scheme. Since the waned efficacy of mRNA vaccines is correlated with the decrease of antibodies occurring over time, we aimed at evaluating whether lower levels of antibodies were associated with an increased risk of breakthrough infection in a cohort of breakthrough subjects that received three vaccine doses. METHODS: Total binding antibodies against the RBD of the S1 subunit (Roche Diagnostics, Machelen, Belgium) and neutralizing antibodies using the Omicron B.1.1.529 variant pseudovirus were measured. Based on individual kinetic curves, the antibody titer of each subject was interpolated just before the breakthrough infection and compared to a matched-control group that did not develop a breakthrough infection. RESULTS: Lower levels of total binding and neutralizing antibodies were observed compared to the control group (6.900 [95% CI; 5.101-9.470] vs. 11.395 BAU/mL [8.627-15.050] [p=0.0301] and 26.6 [18.0-39.3] vs. 59.5 dilution titer-1 [32.3-110] [p=0.0042], respectively). The difference between breakthrough and control subjects was mostly observed for neutralizing antibodies before three months after the homologous booster administration (46.5 [18.2-119] vs. 381 [285-509] [p=0.0156]). Considering the measurement of total binding antibodies before 3 months, there was no significant difference (p=0.4375). CONCLUSIONS: In conclusion, our results showed that subjects that developed a breakthrough infection had lower levels of neutralizing and total binding antibodies compared to controls. The difference was mostly noticeable considering neutralizing antibodies, especially for infections occurring before 3 months after the booster administration.


Asunto(s)
COVID-19 , Humanos , Infección Irruptiva , Vacuna BNT162 , Anticuerpos Neutralizantes , Atención a la Salud , Anticuerpos Antivirales
5.
Phytochem Anal ; 34(6): 632-640, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37254639

RESUMEN

INTRODUCTION: Miroestrol and deoxymiroestrol are potent phytoestrogens and are oestrogen markers of Pueraria candollei var. mirifica. However, purifying these compounds is difficult because they only exist in trace amounts. OBJECTIVES: Active fragment antigen-binding (Fab) antibodies were produced via Escherichia coli SHuffle® T7 and used to selectively separate these compounds. MATERIALS AND METHODS: Two immunoaffinity separation approaches were developed, namely the immunoaffinity column (IAC) and a cell-based method. Group-specific Fab antibodies against miroestrol and deoxymiroestrol (anti-MD Fab) were used as biological binding reagents for selective separation. RESULTS: The Fab-based IAC effectively separated miroestrol and deoxymiroestrol (0.65 and 2.24 µg per 2 mL of resin, respectively) from P. mirifica root extract. When P. mirifica extract was added to E. coli cultures during Fab expression via a cell-based method, the target compound accumulated in intracellular compartments and, thus, were separated from E. coli cells after the removal of other compounds. A yield of 1.07 µg of miroestrol per gram of cell pellet weight was obtained. Miroestrol and deoxymiroestrol were successfully purified from P. mirifica extract using anti-MD Fab via the IAC and an intracellular cell-based method. CONCLUSION: The proposed methods can simplify the miroestrol and deoxymiroestrol extraction process and provide a basis for applications utilising recombinant antibodies to separate target compounds.


Asunto(s)
Pueraria , Pueraria/química , Escherichia coli/genética , Extractos Vegetales
6.
J Infect Dis ; 226(10): 1731-1742, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-35535503

RESUMEN

BACKGROUND: Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS: Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS: SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS: mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunogenicidad Vacunal , ARN Mensajero , Glicoproteína de la Espiga del Coronavirus
7.
J Med Virol ; 94(9): 4542-4547, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35577570

RESUMEN

Gene therapy using an adeno-associated virus (AAV) vector offers a new treatment option for individuals with monogenetic disorders. The major bottleneck is the presence of pre-existing anti-AAV antibodies, which impacts its use. Even very low titers of neutralizing antibodies (NAb) to capsids from natural AAV infections have been reported to inhibit the transduction of intravenously administered AAV in animal models and are associated with limited efficacy in human trials. Assessing the level of pre-existing NAb is important for determining the primary eligibility of patients for AAV vector-based gene therapy clinical trials. Techniques used to screen AAV-antibodies include AAV capsid enzyme-linked immunosorbent assay (ELISA) and transduction inhibition assay (TIA) for detecting total capsid-binding (TAb) and Nab, respectively. In this study, we screened 521 individuals with hemophilia A from India for TAb and NAb using ELISA and TIA, respectively. The prevalence of TAb and NAb in hemophilia A patients from India were 96% and 77.5%, respectively. There was a significant increase in anti-AAV3 NAb prevalence with age in the hemophilia A patient group from India. There was a trend in anti-AAV3 TAb positivity between the pediatric age group (94.4%) and the adult age group (97.4%).


Asunto(s)
Anticuerpos Antivirales , Hemofilia A , Adulto , Animales , Anticuerpos Neutralizantes , Niño , Dependovirus/genética , Vectores Genéticos , Hemofilia A/epidemiología , Hemofilia A/inmunología , Hemofilia A/terapia , Humanos , Prevalencia , Serogrupo
8.
J Biol Chem ; 295(4): 1009-1020, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31831622

RESUMEN

Cancer remains a leading cause of morbidity and mortality worldwide, requiring ongoing development of targeted therapeutics such as monoclonal antibodies. Carbohydrates on embryonic cells are often highly expressed in cancer and are therefore attractive targets for antibodies. Stage-specific embryonic antigen-4 (SSEA-4) is one such glycolipid target expressed in many cancers, including breast and ovarian carcinomas. Here, we defined the structural basis for recognition of SSEA-4 by a novel monospecific chimeric antibody (ch28/11). Five X-ray structures of ch28/11 Fab complexes with the SSEA-4 glycan headgroup, determined at 1.5-2.7 Å resolutions, displayed highly similar three-dimensional structures indicating a stable binding mode. The structures also revealed that by adopting a horseshoe-shaped conformation in a deep groove, the glycan headgroup likely sits flat against the membrane to allow the antibody to interact with SSEA-4 on cancer cells. Moreover, we found that the terminal sialic acid of SSEA-4 plays a dominant role in dictating the exquisite specificity of the ch28/11 antibody. This observation was further supported by molecular dynamics simulations of the ch28/11-glycan complex, which show that SSEA-4 is stabilized by its terminal sialic acid, unlike SSEA-3, which lacks this sialic acid modification. These high-resolution views of how a glycolipid interacts with an antibody may help to advance a new class of cancer-targeting immunotherapy.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/inmunología , Antígenos Embrionarios Específico de Estadio/metabolismo , Anticuerpos Antineoplásicos/química , Especificidad de Anticuerpos/inmunología , Conformación de Carbohidratos , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Ligandos , Simulación de Dinámica Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Antígenos Embrionarios Específico de Estadio/química
9.
Biochem J ; 477(17): 3219-3235, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32789497

RESUMEN

Immunotherapy has been successful in treating many tumour types. The development of additional tumour-antigen binding monoclonal antibodies (mAbs) will help expand the range of immunotherapeutic targets. Lewis histo-blood group and related glycans are overexpressed on many carcinomas, including those of the colon, lung, breast, prostate and ovary, and can therefore be selectively targeted by mAbs. Here we examine the molecular and structural basis for recognition of extended Lea and Lex containing glycans by a chimeric mAb. Both the murine (FG88.2) IgG3 and a chimeric (ch88.2) IgG1 mAb variants showed reactivity to colorectal cancer cells leading to significantly reduced cell viability. We determined the X-ray structure of the unliganded ch88.2 fragment antigen-binding (Fab) containing two Fabs in the unit cell. A combination of molecular docking, glycan grafting and molecular dynamics simulations predicts two distinct subsites for recognition of Lea and Lex trisaccharides. While light chain residues were exclusively used for Lea binding, recognition of Lex involved both light and heavy chain residues. An extended groove is predicted to accommodate the Lea-Lex hexasaccharide with adjoining subsites for each trisaccharide. The molecular and structural details of the ch88.2 mAb presented here provide insight into its cross-reactivity for various Lea and Lex containing glycans. Furthermore, the predicted interactions with extended epitopes likely explains the selectivity of this antibody for targeting Lewis-positive tumours.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino , Antineoplásicos Inmunológicos , Fragmentos Fab de Inmunoglobulinas , Antígenos del Grupo Sanguíneo de Lewis , Antígeno Lewis X , Simulación del Acoplamiento Molecular , Neoplasias , Oligosacáridos , Animales , Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Monoclonales de Origen Murino/inmunología , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/inmunología , Línea Celular Tumoral , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Antígenos del Grupo Sanguíneo de Lewis/química , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Antígeno Lewis X/química , Antígeno Lewis X/inmunología , Ratones , Neoplasias/química , Neoplasias/inmunología , Oligosacáridos/química , Oligosacáridos/inmunología
10.
Immunol Rev ; 270(1): 132-51, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26864109

RESUMEN

Monoclonal antibodies have become a general modality in therapeutic development, and a variety of monoclonal antibodies targeting soluble antigens have been developed. However, even with infinite binding affinity to an antigen, a conventional antibody can bind to the antigen only once and results in an increase in total plasma antigen concentration in vivo. This antibody-mediated antigen accumulation generally occurs because the clearance from circulation of an antibody-antigen complex is much slower than that of a free antigen. This limitation has recently been overcome by sweeping antibodies, which are capable of actively eliminating soluble antigens from circulation. A sweeping antibody incorporates two antibody engineering technologies: one is variable region engineering to enable the antibody to bind to an antigen in plasma and dissociate from the antigen in endosome (after which the antigen undergoes lysosomal degradation), and the other is constant region engineering to increase the cellular uptake of the antibody-antigen complex into endosome. By enhancing the elimination of soluble antigens from circulation, sweeping antibodies can therapeutically target soluble antigens that conventional antibodies cannot. This review discusses the features, engineering technologies, advantages, and applications of sweeping antibodies that target soluble antigens.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Antígenos/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Afinidad de Anticuerpos/genética , Afinidad de Anticuerpos/inmunología , Formación de Anticuerpos , Antígenos/sangre , Descubrimiento de Drogas , Ingeniería Genética/métodos , Humanos , Unión Proteica/inmunología , Receptores Fc/metabolismo
11.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29793957

RESUMEN

We developed a method of simultaneous vaccination with DNA and protein resulting in robust and durable cellular and humoral immune responses with efficient dissemination to mucosal sites and protection against simian immunodeficiency virus (SIV) infection. To further optimize the DNA-protein coimmunization regimen, we tested a SIVmac251-based vaccine formulated with either of two Toll-like receptor 4 (TLR4) ligand-based liposomal adjuvant formulations (TLR4 plus TLR7 [TLR4+7] or TLR4 plus QS21 [TLR4+QS21]) in macaques. Although both vaccines induced humoral responses of similar magnitudes, they differed in their functional quality, including broader neutralizing activity and effector functions in the TLR4+7 group. Upon repeated heterologous SIVsmE660 challenge, a trend of delayed viral acquisition was found in vaccinees compared to controls, which reached statistical significance in animals with the TRIM-5α-resistant (TRIM-5α R) allele. Vaccinees were preferentially infected by an SIVsmE660 transmitted/founder virus carrying neutralization-resistant A/K mutations at residues 45 and 47 in Env, demonstrating a strong vaccine-induced sieve effect. In addition, the delay in virus acquisition directly correlated with SIVsmE660-specific neutralizing antibodies. The presence of mucosal V1V2 IgG binding antibodies correlated with a significantly decreased risk of virus acquisition in both TRIM-5α R and TRIM-5α-moderate/sensitive (TRIM-5α M/S) animals, although this vaccine effect was more prominent in animals with the TRIM-5α R allele. These data support the combined contribution of immune responses and genetic background to vaccine efficacy. Humoral responses targeting V2 and SIV-specific T cell responses correlated with viremia control. In conclusion, the combination of DNA and gp120 Env protein vaccine regimens using two different adjuvants induced durable and potent cellular and humoral responses contributing to a lower risk of infection by heterologous SIV challenge.IMPORTANCE An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Productos del Gen env , Inmunidad Humoral , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Vacunas de ADN , Adyuvantes Inmunológicos/farmacología , Sustitución de Aminoácidos , Animales , Productos del Gen env/genética , Productos del Gen env/inmunología , Productos del Gen env/farmacología , Inmunización , Macaca , Mutación Missense , Vacunas contra el SIDAS/genética , Vacunas contra el SIDAS/inmunología , Vacunas contra el SIDAS/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/inmunología , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas de ADN/farmacología
12.
Mult Scler ; 20(5): 577-87, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24009164

RESUMEN

BACKGROUND: Neutralizing antibodies (NAb) affect efficacy of interferon-beta (IFN-b) treatment in multiple sclerosis (MS) patients. NAbs evolve in up to 44% of treated patients, usually between 6-18 months on therapy. OBJECTIVES: To investigate whether early binding antibody (BAb) titers or different IFN-b biomarkers predict NAb evolution. METHODS: We included patients with MS or clinically isolated syndrome (CIS) receiving de novo IFN-b treatment in this prospective European multicenter study. Blood samples were collected at baseline, before and after the first IFN-b administration, and again after 3, 12 and 24 months on that therapy; for determination of NAbs, BAbs, gene expression of MxA and protein concentrations of MMP-9, TIMP-1, sTRAIL, CXCL-10 and CCL-2. RESULTS: We found that 22 of 164 (13.4%) patients developed NAbs during a median time of 23.8 months on IFN-b treatment. Of these patients, 78.9% were BAb-positive after 3 months. BAb titers ≥ 1:2400 predicted NAb evolution with a sensitivity of 74.7% and a specificity of 98.5%. Cross-sectionally, MxA levels were significantly diminished in the BAb/NAb-positive samples; similarly, CXCL-10 and sTRAIL concentrations in BAb/NAb-positive and BAb-positive/NAb-negative samples, respectively, were also diminished compared to BAb/NAb-negative samples. CONCLUSIONS: BAb titers reliably predict NAbs. CXCL-10 is a promising sensitive biomarker for IFN-b response and its abrogation by anti-IFN-b antibodies.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/inmunología , Factores Inmunológicos/inmunología , Factores Inmunológicos/uso terapéutico , Interferón beta/inmunología , Interferón beta/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Adulto , Biomarcadores/sangre , Quimiocina CXCL10/sangre , Enfermedades Desmielinizantes/sangre , Enfermedades Desmielinizantes/diagnóstico , Diagnóstico Precoz , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/genética , Proteínas de Resistencia a Mixovirus/genética , Valor Predictivo de las Pruebas , Estudios Prospectivos , Ligando Inductor de Apoptosis Relacionado con TNF/sangre , Factores de Tiempo , Resultado del Tratamiento
13.
J Med Primatol ; 43(5): 329-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24810337

RESUMEN

BACKGROUND: A desirable HIV vaccine should induce protective long-lasting humoral and cellular immune responses. METHODS: Macaques were immunized by env DNA, selected from a panel of recently transmitted SIVmac251 Env using intradermal electroporation as vaccine delivery method and magnitude, breadth and longevity of humoral and cellular immune responses. RESULTS: The macaques developed high, long-lasting humoral immune responses with neutralizing capacity against homologous and heterologous Env. The avidity of the antibody responses was also preserved over 1-year follow-up. Analysis of cellular immune responses demonstrated induction of Env-specific memory T cells harboring granzyme B, albeit their overall levels were low. Similar to the humoral responses, the cellular immunity was persistent over the ~1-year follow-up. CONCLUSION: These data show that vaccination by this intradermal DNA delivery regimen is able to induce potent and durable immune responses in macaques.


Asunto(s)
Electroporación , Inyecciones Intradérmicas , Macaca mulatta , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunación/métodos , Animales , Femenino , Inmunidad Celular , Inmunidad Humoral , Ratones , Ratones Endogámicos BALB C , Vacunas contra el SIDAS/administración & dosificación , Vacunas contra el SIDAS/efectos adversos
14.
J Immunoassay Immunochem ; 35(4): 398-411, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24547871

RESUMEN

In MS patients under IFNß treatment to seek alternative treatments timely is important that anti-IFNß antibodies and/or in vivo biologic activity loss detection in these. The most common diagnostic markers used for this purpose are BAb, Nab, and MxA. In this article, we aimed to establish the availability and feasibility of the correlation between BAb and MxA gene expression (mRNA) levels using evaluation of responses to IFNß treatment for MS patients with a routine laboratory follow-up strategy in a major Turkish MS center. Bab seropositivity was determined in blood samples of 218 MS patients treated with different IFNß preparations and MxA mRNA levels were measured in 128 patients among the total population. BAb seropositivity ratios to im INF-ß 1a, scINF-ß 1a, and sc INF-ß 1b were 21.4%, 28.6%, and 70.4%, respectively (total 40%), and total loss of bioactivity (MxA mRNA) were 9.3%, 9.5%, and 11.6%, respectively (total 10.2%). The correlation between high BAb titers and low MxA mRNA levels was highly significant (P = 0.00003). Our data indicate that there is a good correlation between especially high BAbs levels and diminished MxA mRNA levels.


Asunto(s)
Anticuerpos/análisis , Anticuerpos/inmunología , Técnicas de Laboratorio Clínico , Interferón beta/inmunología , Esclerosis Múltiple/inmunología , Proteínas de Resistencia a Mixovirus/inmunología , Adolescente , Adulto , Biomarcadores/análisis , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Interferón beta/uso terapéutico , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/tratamiento farmacológico , Proteínas de Resistencia a Mixovirus/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto Joven
15.
Narra J ; 4(2): e1071, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39280276

RESUMEN

Due to the persisting development of SARS-CoV-2 variants, studies on the kinetics, duration, and function of antibodies are essential for vaccine development and long-term immunity prediction. This longitudinal study examined post-vaccination antibody responses in people after receiving CoronaVac or ChAdOx1 vaccines with or without a history of SARS-CoV-2 infection. Conducted in Indonesia between August 2021 and May 2023, this study involved 121 participants divided into two groups based on the received vaccine types and monitored for 18 months post-second dose vaccination by assessing the binding antibody (BAb) level and neutralizing antibody (NAb) inhibition rate at six time points. The study also documented the participants' age, gender, and body mass index (BMI). Before the first dose vaccination, 85 (70.2%) participants were reactive BAb (defined by BAb level ≥50 AU/mL) indicating a history of infection. In the CoronaVac group, only 53.1% were reactive BAb. However, 100% of participants were positive NAb (defined by NAb inhibition rate ≥30%), which indicates a past history of infection with low initial or rapidly decreasing BAb levels. In the ChAdOx1 group, 81.9% of participants were reactive, while only 54.2% were positive NAb, suggesting a recent infection with a high BAb level but a relatively low NAb inhibition rate. During the 18 months post-second dose vaccination, the BAb levels fluctuated. However, 100% of participants were positive NAb. No significant difference in antibody response was documented among participants with or without infection history. Also, no significant impact was presented by the factors of sex, age, and BMI. The findings highlight the crucial of the vaccine in public health and how vaccination strategies could be optimized effectively during and after the post-pandemic.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Indonesia/epidemiología , Masculino , Estudios Longitudinales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Femenino , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/epidemiología , Adulto , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Persona de Mediana Edad , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , SARS-CoV-2/inmunología , ChAdOx1 nCoV-19 , Adulto Joven , Vacunación
16.
Immunol Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829493

RESUMEN

Monkeypox cases continue to increase globally, and there is an urgent need to develop a highly effective vaccine against monkeypox. This study investigated the binding and authentic-virus neutralizing activities of sera from mice immunized with EEV (extracellularly enveloped viruses) antigens B6R and A35R, and IMV (intrinsic material viruses) antigens M1R, A29L, E8L, and H3L against monkeypox virus. The results showed that immunizations of A35R and E8L could only induce lower titers of binding antibodies, in contrast, immunization of M1R induced the highest titers of binding antibodies, while immunization of B6R, H3L, and A29L induced moderate titers of binding antibodies. For the live monkeypox virus neutralization assay, the results showed that immunization with two doses of EEV antigen B6R did not effectively induce humoral immune responses to neutralize monkeypox live virus, immunization with EEV-A35R only induced weak monkeypox-neutralizing antibodies. In contrast, the immunization of the four types of monkeypox virus IMV antigens can all induce neutralizing antibodies against authentic monkeypox virus, among them, A29L and H3L induced the highest neutralizing antibody titers. The results of this study provide important references for the selection of antigens in the development of the next generation of monkeypox vaccines.

17.
Diseases ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667525

RESUMEN

The circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variant presents an ongoing challenge for surveillance and detection. It is important to establish an assay for SARS-CoV-2 antibodies in vaccinated individuals. Numerous studies have demonstrated that binding antibodies (such as S-IgG and N-IgG) and neutralizing antibodies (Nabs) can be detected in vaccinated individuals. However, it is still unclear how to evaluate the consistency and correlation between binding antibodies and Nabs induced by inactivated SARS-CoV-2 vaccines. In this study, serum samples from humans, rhesus macaques, and hamsters immunized with inactivated SARS-CoV-2 vaccines were analyzed for S-IgG, N-IgG, and Nabs. The results showed that the titer and seroconversion rate of S-IgG were significantly higher than those of N-IgG. The correlation between S-IgG and Nabs was higher compared to that of N-IgG. Based on this analysis, we further investigated the titer thresholds of S-IgG and N-IgG in predicting the seroconversion of Nabs. According to the threshold, we can quickly determine the positive and negative effects of the SARS-CoV-2 variant neutralizing antibody in individuals. These findings suggest that the S-IgG antibody is a better supplement to and confirmation of SARS-CoV-2 vaccine immunization.

18.
Pathog Dis ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354682

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have already infected more than 0.7 billion people and caused over 7 million deaths worldwide. At the same time, our knowledge about this virus is still incipient. In some cases, there is a pre-pandemic immunity, however its source is unknown. The analysis of patients' humoral responses might shed a light on this puzzle. In this paper, we evaluated the antibody recognition of nucleocapsid protein, one of the structural proteins of SARS-CoV-2. For this purpose, we used pre-pandemic, acute COVID-19 and convalescent patients' sera to identify and map nucleocapsid protein epitopes. We identified a common epitope KKSAAEASKKPRQKRTATKA recognized by sera antibodies from all three groups. Some motifs of this sequence are widespread among various coronaviruses, plant or human proteins indicating that there might be more sources of nucleocapsid-reactive antibodies than previous infection with seasonal coronavirus. The two sequences MSDNGPQNQRNAPRITFGGP and KADETQALPQRQKKQQTVTL were detected as specific for sera from patients in acute phase of infection and convalescents making them suitable for future development of vaccine against SARS-CoV-2. Knowledge of the humoral response to SARS-CoV-2 infection is essential for the design of appropriate diagnostic tools and vaccine antigens.

19.
Front Pharmacol ; 15: 1351536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495105

RESUMEN

Neuroblastoma (NB) is the most common extracranial pediatric solid tumor originating from the abnormal development of cells of the sympathoadrenal lineage of the neural crest. Targeting GD2 ganglioside (GD2), a glycolipid expressed on neuroblastoma cells, with GD2 ganglioside-recognizing antibodies affects several pivotal signaling routes that drive or influence the malignant phenotype of the cells. Previously performed gene expression profiling helped us to identify the PHLDA1 (pleckstrin homology-like domain family A member 1) gene as the most upregulated gene in the IMR-32 human neuroblastoma cells treated with the mouse 14G2a monoclonal antibody. Mass spectrometry-based proteomic analyses were applied to better characterize a role of PHLDA1 protein in the response of neuroblastoma cells to chimeric ch14.18/CHO antibody. Additionally, global protein expression profile analysis in the IMR-32 cell line with PHLDA1 silencing revealed the increase in biological functions of mitochondria, accompanied by differentiation-like phenotype of the cells. Moreover, mass spectrometry analysis of the proteins co-immunoprecipitated using anti-PHLDA1-specific antibody, selected a group of possible PHLDA1 binding partners. Also, a more detailed analysis suggested that PHLDA1 interacts with the DCAF7/AUTS2 complex, a key component of neuronal differentiation in vitro. Importantly, our results indicate that PHLDA1 silencing enhances the EGF receptor signaling pathway and combinatory treatment of gefitinib and ch14.18/CHO antibodies might be beneficial for neuroblastoma patients. Data are available via ProteomeXchange with the identifier PXD044319.

20.
Hum Vaccin Immunother ; 19(3): 2289242, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078840

RESUMEN

Long-term follow-up of a cohort of unmarried girls who received one, two, or three doses of quadrivalent HPV vaccine, between 10 and 18 years of age, in an Indian multi-centric study allowed us to compare antibody responses between the younger and older age cohorts at 10-years post-vaccination, and study the impact of initiation of sexual activity and cervical HPV infections on antibody levels. Among the younger (10-14 years) recipients of a single dose, 97.7% and 98.2% had detectable binding antibody titers against HPV 16 and HPV 18 respectively at ten years post-vaccination. The proportions among those receiving a single dose at age 15-18 years were 92.3% and 94.2% against HPV 16 and HPV 18 respectively. Mean HPV 16 binding antibody titers were 2.1 folds (95%CI 1.4 to 3.3) higher in those vaccinated at ages 10-14 years, and 1.9 folds (95%CI 1.2 to 3.0) higher in those vaccinated at 15-18 years compared to mean titers seen in the unvaccinated women. Compared to previous timepoints of 36 or 48 months, binding antibodies against HPV 16 and neutralizing antibodies against both HPV 16 and HPV 18 were significantly higher at 10 years. This rise was more pronounced in participants vaccinated at 15-18 years. No association of marital status or cervical HPV infections was observed with the rise in titer. Durability of antibody response in single dose recipients correlated well with the high efficacy of a single dose against persistent HPV 16/18 infections irrespective of age at vaccination, as we reported earlier.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Adolescente , Niño , Femenino , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Vacuna Tetravalente Recombinante contra el Virus del Papiloma Humano Tipos 6, 11 , 16, 18 , Infecciones por Papillomavirus/prevención & control , Vacunación , Vacunas Combinadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA