Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.887
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(1): 171-187.e14, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198850

RESUMEN

Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.


Asunto(s)
Vacuna BCG , Inmunidad Entrenada , Humanos , Multiómica , Vacunación , Epigénesis Genética
2.
Trends Biochem Sci ; 49(6): 532-544, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582689

RESUMEN

Interactions of RNA with DNA are principles of gene expression control that have recently gained considerable attention. Among RNA-DNA interactions are R-loops and RNA-DNA hybrid G-quadruplexes, as well as RNA-DNA triplexes. It is proposed that RNA-DNA triplexes guide RNA-associated regulatory proteins to specific genomic locations, influencing transcription and epigenetic decision making. Although triplex formation initially was considered solely an in vitro event, recent progress in computational, biochemical, and biophysical methods support in vivo functionality with relevance for gene expression control. Here, we review the central methodology and biology of triplexes, outline paradigms required for triplex function, and provide examples of physiologically important triplex-forming long non-coding RNAs.


Asunto(s)
ADN , ARN , ADN/metabolismo , ADN/química , ARN/metabolismo , ARN/química , ARN/genética , Humanos , Animales , Conformación de Ácido Nucleico
3.
Trends Genet ; 40(3): 276-290, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38123442

RESUMEN

In the past decade tRNA sequencing (tRNA-seq) has attracted considerable attention as an important tool for the development of novel approaches to quantify highly modified tRNA species and to propel tRNA research aimed at understanding the cellular physiology and disease and development of tRNA-based therapeutics. Many methods are available to quantify tRNA abundance while accounting for modifications and tRNA charging/acylation. Advances in both library preparation methods and bioinformatic workflows have enabled developments in next-generation sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of hybridization-based approaches. In this review we provide a brief comparative overview of various tRNA quantification approaches, focusing on the advantages and disadvantages of these methods, which together facilitate reliable tRNA quantification.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN de Transferencia , ARN de Transferencia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional , Aminoacilación de ARN de Transferencia
4.
Am J Hum Genet ; 111(6): 1035-1046, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754426

RESUMEN

Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed summary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mutation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence score (minimum: 0; max: 28). We identified 292 high-scoring genes (≥11) in 264 loci, including genes known to play a role in body weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g., FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer avenues to develop therapeutics for weight loss.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad , Humanos , Obesidad/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Herencia Multifactorial/genética , Sitios Genéticos , Análisis de la Aleatorización Mendeliana
5.
Proc Natl Acad Sci U S A ; 121(11): e2313809121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437538

RESUMEN

The potential of engineered enzymes in industrial applications is often limited by their expression levels, thermal stability, and catalytic diversity. De novo enzyme design faces challenges due to the complexity of enzymatic catalysis. An alternative approach involves expanding natural enzyme capabilities for new substrates and parameters. Here, we introduce CoSaNN (Conformation Sampling using Neural Network), an enzyme design strategy using deep learning for structure prediction and sequence optimization. CoSaNN controls enzyme conformations to expand chemical space beyond simple mutagenesis. It employs a context-dependent approach for generating enzyme designs, considering non-linear relationships in sequence and structure space. We also developed SolvIT, a graph NN predicting protein solubility in Escherichia coli, optimizing enzyme expression selection from larger design sets. Using this method, we engineered enzymes with superior expression levels, with 54% expressed in E. coli, and increased thermal stability, with over 30% having higher Tm than the template, with no high-throughput screening. Our research underscores AI's transformative role in protein design, capturing high-order interactions and preserving allosteric mechanisms in extensively modified enzymes, and notably enhancing expression success rates. This method's ease of use and efficiency streamlines enzyme design, opening broad avenues for biotechnological applications and broadening field accessibility.


Asunto(s)
Aprendizaje Profundo , Escherichia coli/genética , Biotecnología , Catálisis , Ensayos Analíticos de Alto Rendimiento
6.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602916

RESUMEN

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Asunto(s)
Arginina , Ligasas , Arginina/metabolismo , Citrulina/metabolismo , Amoníaco , Ornitina/genética , Adenosina Trifosfato/metabolismo , Fosfatos , Adenosina , Catálisis
7.
Proc Natl Acad Sci U S A ; 121(7): e2312676121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324566

RESUMEN

To facilitate analysis and sharing of mass spectrometry (MS)-based proteomics data, we created online tools called CURTAIN (https://curtain.proteo.info) and CURTAIN-PTM (https://curtainptm.proteo.info) with an accompanying series of video tutorials (https://www.youtube.com/@CURTAIN-me6hl). These are designed to enable non-MS experts to interactively peruse volcano plots and deconvolute primary experimental data so that replicates can be visualized in bar charts or violin plots and exported in publication-ready format. They also allow assessment of overall experimental quality by correlation matrix and profile plot analysis. After making a selection of protein "hits", the user can analyze known domain structure, AlphaFold predicted structure, reported interactors, relative expression as well as disease links. CURTAIN-PTM permits analysis of all identified PTM sites on protein(s) of interest with selected databases. CURTAIN-PTM also links with the Kinase Library to predict upstream kinases that may phosphorylate sites of interest. We provide examples of the utility of CURTAIN and CURTAIN-PTM in analyzing how targeted degradation of the PPM1H Rab phosphatase that counteracts the Parkinson's LRRK2 kinase impacts cellular protein levels and phosphorylation sites. We also reanalyzed a ubiquitylation dataset, characterizing the PINK1-Parkin pathway activation in primary neurons, revealing data of interest not highlighted previously. CURTAIN and CURTAIN-PTM are free to use and open source, enabling researchers to share and maximize the impact of their proteomics data. We advocate that MS data published in volcano plot format be reported containing a shareable CURTAIN weblink, thereby allowing readers to better analyze and exploit the data.


Asunto(s)
Espectrometría de Masas , Proteómica , Programas Informáticos , Internet , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas/análisis , Proteómica/métodos
8.
Proc Natl Acad Sci U S A ; 121(19): e2317954121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683976

RESUMEN

Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.


Asunto(s)
ADN Helicasas , Replicación del ADN , Filogenia , Vibrionaceae , Vibrionaceae/genética , Vibrionaceae/enzimología , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Bacteriófagos/genética , Bacteriófagos/enzimología , Evolución Molecular , Genoma Bacteriano , AdnB Helicasas/metabolismo , AdnB Helicasas/genética , Vibrio/genética , Vibrio/enzimología
9.
RNA ; 30(3): 213-222, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164607

RESUMEN

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Asunto(s)
Bromovirus , Virus ARN , Tirosina-ARNt Ligasa , Secuencia de Bases , Anticodón/genética , ARN Viral/química , ARN de Transferencia/química , Bromovirus/genética , Bromovirus/metabolismo , Virus ARN/genética , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo , Tirosina/genética , Tirosina/metabolismo , Conformación de Ácido Nucleico
10.
RNA ; 30(7): 760-769, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38565243

RESUMEN

RNA thermometers are highly structured noncoding RNAs located in the 5'-untranslated regions (UTRs) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermosensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in the 5'-UTR of a gene that codes for σ 70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects B. pectinophilus The other thermometer is in the 5'-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.


Asunto(s)
Regiones no Traducidas 5' , Humanos , Biología Computacional/métodos , Bacteriófagos/genética , Bacteroides/genética , Bacteroides/virología , ARN Bacteriano/genética , Conformación de Ácido Nucleico , ARN Viral/genética
11.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711367

RESUMEN

Hi-C data are commonly normalized using single sample processing methods, with focus on comparisons between regions within a given contact map. Here, we aim to compare contact maps across different samples. We demonstrate that unwanted variation, of likely technical origin, is present in Hi-C data with replicates from different individuals, and that properties of this unwanted variation change across the contact map. We present band-wise normalization and batch correction, a method for normalization and batch correction of Hi-C data and show that it substantially improves comparisons across samples, including in a quantitative trait loci analysis as well as differential enrichment across cell types.


Asunto(s)
Sitios de Carácter Cuantitativo , Humanos , Biología Computacional
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38446742

RESUMEN

Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Algoritmos , Biología Computacional , Diseño de Fármacos
13.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39082646

RESUMEN

Metagenomics involves the study of genetic material obtained directly from communities of microorganisms living in natural environments. The field of metagenomics has provided valuable insights into the structure, diversity and ecology of microbial communities. Once an environmental sample is sequenced and processed, metagenomic binning clusters the sequences into bins representing different taxonomic groups such as species, genera, or higher levels. Several computational tools have been developed to automate the process of metagenomic binning. These tools have enabled the recovery of novel draft genomes of microorganisms allowing us to study their behaviors and functions within microbial communities. This review classifies and analyzes different approaches of metagenomic binning and different refinement, visualization, and evaluation techniques used by these methods. Furthermore, the review highlights the current challenges and areas of improvement present within the field of research.


Asunto(s)
Metagenómica , Metagenómica/métodos , Biología Computacional/métodos , Metagenoma , Algoritmos , Genómica/métodos
14.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39140856

RESUMEN

The field of quantum computing (QC) is expanding, with efforts being made to apply it to areas previously covered by classical algorithms and methods. Bioinformatics is one such domain that is developing in terms of QC. This article offers a broad mapping review of methods and algorithms of QC in bioinformatics, marking the first of its kind. It presents an overview of the domain and aids researchers in identifying further research directions in the early stages of this field of knowledge. The work presented here shows the current state-of-the-art solutions, focuses on general future directions, and highlights the limitations of current methods. The gathered data includes a comprehensive list of identified methods along with descriptions, classifications, and elaborations of their advantages and disadvantages. Results are presented not just in a descriptive table but also in an aggregated and visual format.


Asunto(s)
Algoritmos , Biología Computacional , Teoría Cuántica , Biología Computacional/métodos , Humanos
15.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38833322

RESUMEN

Recent advances in tumor molecular subtyping have revolutionized precision oncology, offering novel avenues for patient-specific treatment strategies. However, a comprehensive and independent comparison of these subtyping methodologies remains unexplored. This study introduces 'Themis' (Tumor HEterogeneity analysis on Molecular subtypIng System), an evaluation platform that encapsulates a few representative tumor molecular subtyping methods, including Stemness, Anoikis, Metabolism, and pathway-based classifications, utilizing 38 test datasets curated from The Cancer Genome Atlas (TCGA) and significant studies. Our self-designed quantitative analysis uncovers the relative strengths, limitations, and applicability of each method in different clinical contexts. Crucially, Themis serves as a vital tool in identifying the most appropriate subtyping methods for specific clinical scenarios. It also guides fine-tuning existing subtyping methods to achieve more accurate phenotype-associated results. To demonstrate the practical utility, we apply Themis to a breast cancer dataset, showcasing its efficacy in selecting the most suitable subtyping methods for personalized medicine in various clinical scenarios. This study bridges a crucial gap in cancer research and lays a foundation for future advancements in individualized cancer therapy and patient management.


Asunto(s)
Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Neoplasias/genética , Neoplasias/clasificación , Neoplasias/terapia , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Oncología Médica/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/terapia , Femenino
16.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711369

RESUMEN

Diet-drug interactions (DDIs) are pivotal in drug discovery and pharmacovigilance. DDIs can modify the systemic bioavailability/pharmacokinetics of drugs, posing a threat to public health and patient safety. Therefore, it is crucial to establish a platform to reveal the correlation between diets and drugs. Accordingly, we have established a publicly accessible online platform, known as Diet-Drug Interactions Database (DDID, https://bddg.hznu.edu.cn/ddid/), to systematically detail the correlation and corresponding mechanisms of DDIs. The platform comprises 1338 foods/herbs, encompassing flora and fauna, alongside 1516 widely used drugs and 23 950 interaction records. All interactions are meticulously scrutinized and segmented into five categories, thereby resulting in evaluations (positive, negative, no effect, harmful and possible). Besides, cross-linkages between foods/herbs, drugs and other databases are furnished. In conclusion, DDID is a useful resource for comprehending the correlation between foods, herbs and drugs and holds a promise to enhance drug utilization and research on drug combinations.


Asunto(s)
Bases de Datos Factuales , Interacciones Alimento-Droga , Humanos , Dieta
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38557676

RESUMEN

Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.


Asunto(s)
Neoplasias , Farmacología , Humanos , Multiómica , Farmacología en Red , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncología Médica , Biología Computacional , Microambiente Tumoral
18.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38877888

RESUMEN

One of the prevalent chronic inflammatory disorders of the nasal mucosa, allergic rhinitis (AR) has become more widespread in recent years. Acupuncture pterygopalatine ganglion (aPPG) is an emerging alternative therapy that is used to treat AR, but the molecular mechanisms underlying its anti-inflammatory effects are unclear. This work methodically demonstrated the multi-target mechanisms of aPPG in treating AR based on bioinformatics/topology using techniques including text mining, bioinformatics, and network topology, among others. A total of 16 active biomarkers and 108 protein targets related to aPPG treatment of AR were obtained. A total of 345 Gene Ontology terms related to aPPG of AR were identified, and 135 pathways were screened based on Kyoto Encyclopedia of Genes and Genomes analysis. Our study revealed for the first time the multi-targeted mechanism of action of aPPG in the treatment of AR. In animal experiments, aPPG ameliorated rhinitis symptoms in OVA-induced AR rats; decreased serum immunoglobulin E, OVA-sIgE, and substance P levels; elevated serum neuropeptide Y levels; and modulated serum Th1/Th2/Treg/Th17 cytokine expression by a mechanism that may be related to the inhibition of activation of the TLR4/NF-κB/NLRP3 signaling pathway. In vivo animal experiments once again validated the results of the bioinformatics analysis. This study revealed a possible multi-target mechanism of action between aPPG and AR, provided new insights into the potential pathogenesis of AR, and proved that aPPG was a promising complementary alternative therapy for the treatment of AR.


Asunto(s)
Terapia por Acupuntura , Biología Computacional , Rinitis Alérgica , Rinitis Alérgica/terapia , Rinitis Alérgica/metabolismo , Animales , Biología Computacional/métodos , Ratas , Ganglios Parasimpáticos/metabolismo , Masculino , Humanos , Mapas de Interacción de Proteínas , Citocinas/metabolismo
19.
Brief Bioinform ; 25(Supplement_1)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041911

RESUMEN

This manuscript describes the development of a resource module that is part of a learning platform named 'NIGMS Sandbox for Cloud-based Learning', https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial authored by National Institute of General Medical Sciences: NIGMS Sandbox: A Learning Platform toward Democratizing Cloud Computing for Biomedical Research at the beginning of this supplement. This module delivers learning materials introducing the utility of the BASH (Bourne Again Shell) programming language for genomic data analysis in an interactive format that uses appropriate cloud resources for data access and analyses. The next-generation sequencing revolution has generated massive amounts of novel biological data from a multitude of platforms that survey an ever-growing list of genomic modalities. These data require significant downstream computational and statistical analyses to glean meaningful biological insights. However, the skill sets required to generate these data are vastly different from the skills required to analyze these data. Bench scientists that generate next-generation data often lack the training required to perform analysis of these datasets and require support from bioinformatics specialists. Dedicated computational training is required to empower biologists in the area of genomic data analysis, however, learning to efficiently leverage a command line interface is a significant barrier in learning how to leverage common analytical tools. Cloud platforms have the potential to democratize access to the technical tools and computational resources necessary to work with modern sequencing data, providing an effective framework for bioinformatics education. This module aims to provide an interactive platform that slowly builds technical skills and knowledge needed to interact with genomics data on the command line in the Cloud. The sandbox format of this module enables users to move through the material at their own pace and test their grasp of the material with knowledge self-checks before building on that material in the next sub-module. This manuscript describes the development of a resource module that is part of a learning platform named ``NIGMS Sandbox for Cloud-based Learning'' https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-seq data in an interactive format that uses appropriate cloud resources for data access and analyses.


Asunto(s)
Nube Computacional , Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Lenguajes de Programación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Humanos
20.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39082653

RESUMEN

A biochemical pathway consists of a series of interconnected biochemical reactions to accomplish specific life activities. The participating reactants and resultant products of a pathway, including gene fragments, proteins, and small molecules, coalesce to form a complex reaction network. Biochemical pathways play a critical role in the biochemical domain as they can reveal the flow of biochemical reactions in living organisms, making them essential for understanding life processes. Existing studies of biochemical pathway networks are mainly based on experimentation and pathway database analysis methods, which are plagued by substantial cost constraints. Inspired by the success of representation learning approaches in biomedicine, we develop the biochemical pathway prediction (BPP) platform, which is an automatic BPP platform to identify potential links or attributes within biochemical pathway networks. Our BPP platform incorporates a variety of representation learning models, including the latest hypergraph neural networks technology to model biochemical reactions in pathways. In particular, BPP contains the latest biochemical pathway-based datasets and enables the prediction of potential participants or products of biochemical reactions in biochemical pathways. Additionally, BPP is equipped with an SHAP explainer to explain the predicted results and to calculate the contributions of each participating element. We conduct extensive experiments on our collected biochemical pathway dataset to benchmark the effectiveness of all models available on BPP. Furthermore, our detailed case studies based on the chronological pattern of our dataset demonstrate the effectiveness of our platform. Our BPP web portal, source code and datasets are freely accessible at https://github.com/Glasgow-AI4BioMed/BPP.


Asunto(s)
Biología Computacional , Redes Neurales de la Computación , Biología Computacional/métodos , Redes y Vías Metabólicas , Programas Informáticos , Algoritmos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA