Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 411, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650553

RESUMEN

BACKGROUND: Catalases (CATs) break down hydrogen peroxide into water and oxygen to prevent cellular oxidative damage, and play key roles in the development, biotic and abiotic stresses of plants. However, the evolutionary relationships of the plant CAT gene family have not been systematically reported. RESULTS: Here, we conducted genome-wide comparative, phylogenetic, and structural analyses of CAT orthologs from 29 out of 31 representative green lineage species to characterize the evolution and functional diversity of CATs. We found that CAT genes in land plants were derived from core chlorophytes and detected a lineage-specific loss of CAT genes in Fabaceae, suggesting that the CAT genes in this group possess divergent functions. All CAT genes were split into three major groups (group α, ß1, and ß2) based on the phylogeny. CAT genes were transferred from bacteria to core chlorophytes and charophytes by lateral gene transfer, and this led to the independent evolution of two types of CAT genes: α and ß types. Ten common motifs were detected in both α and ß groups, and ß CAT genes had five unique motifs, respectively. The findings of our study are inconsistent with two previous hypotheses proposing that (i) new CAT genes are acquired through intron loss and that (ii) the Cys-343 residue is highly conserved in plants. We found that new CAT genes in most higher plants were produced through intron acquisition and that the Cys-343 residue was only present in monocots, Brassicaceae and Pp_CatX7 in P. patens, which indicates the functional specificity of the CATs in these three lineages. Finally, our finding that CAT genes show high overall sequence identity but that individual CAT genes showed developmental stage and organ-specific expression patterns suggests that CAT genes have functionally diverged independently. CONCLUSIONS: Overall, our analyses of the CAT gene family provide new insights into their evolution and functional diversification in green lineage species.


Asunto(s)
Chlorophyta , Embryophyta , Catalasa/genética , Chlorophyta/genética , Embryophyta/genética , Evolución Molecular , Genes de Plantas , Filogenia , Plantas/genética
2.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409186

RESUMEN

Catalases (CATs) are important self-originating enzymes and are involved in many of the biological functions of plants. Multiple forms of CATs suggest their versatile role in lesion mimic mutants (LMMs), H2O2 homeostasis and abiotic and biotic stress tolerance. In the current study, we identified a large lesion mimic mutant9428 (llm9428) from Ethyl-methane-sulfonate (EMS) mutagenized population. The llm9428 showed a typical phenotype of LMMs including decreased agronomic yield traits. The histochemical assays showed decreased cell viability and increased reactive oxygen species (ROS) in the leaves of llm9428 compared to its wild type (WT). The llm9428 showed enhanced blast disease resistance and increased relative expression of pathogenesis-related (PR) genes. Studies of the sub-cellular structure of the leaf and quantification of starch contents revealed a significant decrease in starch granule formation in llm9428. Genetic analysis revealed a single nucleotide change (C > T) that altered an amino acid (Ala > Val) in the candidate gene (Os03g0131200) encoding a CATALASE C in llm9428. CRISPR-Cas9 targetted knockout lines of LLM9428/OsCATC showed the phenotype of LMMs and reduced starch metabolism. Taken together, the current study results revealed a novel role of OsCATC in starch metabolism in addition to validating previously studied functions of CATs.


Asunto(s)
Oryza , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Mutación , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo
3.
Microb Pathog ; 161(Pt B): 105270, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34793878

RESUMEN

Sporothrix schenckii is a dimorphic fungus, pathogenic to humans and animals, which is usually infective in the yeast form. Reactive oxygen species (ROS) play an important role in the host's defense, damaging the pathogen's DNA, proteins, and lipids. To prevent oxidative damage, the ROS are detoxified by pathogen-derived antioxidant enzymes such as catalases (CATs). In this work, we analyzed the activity and expression level of three S. schenckii genes, designated as CAT1, CAT2, and CAT3, that putatively encoded for three isoforms of monofunctional CAT with a predicted molecular weight of 57.6, 56.2, and 81.4 kDa, respectively. Our results demonstrate that oxidative stress induced by exogenous H2O2 leads to an altered lipid peroxidation, modifying CAT activity and the expression levels of the CAT genes, being CAT1 and CAT3 the genes with the highest expression in response to the oxidizing agent. These results show that CAT isoforms in S. schenckii can be regulated in response to oxidative stress and might help to control ROS homeostasis in the fungus-host interaction.


Asunto(s)
Sporothrix , Esporotricosis , Animales , Catalasa/genética , Catalasa/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Sporothrix/genética , Esporotricosis/veterinaria
4.
Bioprocess Biosyst Eng ; 44(6): 1309-1319, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33640996

RESUMEN

Enzymes immobilized in metal-organic frameworks (MOFs) have attracted great attention as a promising hybrid material. In the study, a novel biomimetic mineralization encapsulation process for a highly stable and easily reusable catalase (CAT)@ZIF-8 composite has been designed. This immobilization process provides a high enzyme loading of 70 wt %. The CAT@ZIF-8 composites exhibited a much lower Km value and better enzyme activity than those of free CAT, exhibiting good stability against enzymatic hydrolysis and protein denaturation under harsh conditions. The inhibitory effects of pesticides such as pH, temperature, solvent (i.e., methanol, dimethyl sulfoxide and tetrahydrofuran) and storage at room temperature (6 months) on the activity of free and immobilized catalase enzyme were investigated. The CAT@MOF composites also exhibited excellent reusability, an obvious advantage for treating a wastewater from food processing. The CAT@MOF developed is promising for the efficient removal of H2O2 under harsh conditions.


Asunto(s)
Biocatálisis , Materiales Biomiméticos/química , Catalasa/química , Peróxido de Hidrógeno/química
5.
Curr Microbiol ; 77(12): 4000-4015, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33064189

RESUMEN

The function of catalases A and T from the budding yeast Saccharomyces cerevisiae (ScCta1 and ScCtt1) is to decompose hydrogen peroxide (H2O2) to mitigate oxidative stress. Catalase orthologs are widely found in yeast, suggesting that scavenging H2O2 is crucial to avoid the oxidative damage caused by reactive oxygen species (ROS). However, the function of catalase orthologs has not yet been experimentally characterized in vivo. Here, we heterologously expressed Debaryomyces hansenii DhCTA1 and DhCTT1 genes, encoding ScCta1 and ScCtt1 orthologs, respectively, in a S. cerevisiae acatalasemic strain (cta1Δ ctt1Δ). We performed a physiological analysis evaluating growth, catalase activity, and H2O2 tolerance of the strains grown with glucose or ethanol as carbon source, as well as under NaCl stress. We found that both genes complement the catalase function in S. cerevisiae. Particularly, the strain harboring DhCTT1 showed improved growth when ethanol was used as carbon source both in the absence or presence of salt stress. This phenotype is attributed to the high catalase activity of DhCtt1 detected at the exponential growth phase, which prevents intracellular ROS accumulation and confers oxidative stress resistance.


Asunto(s)
Debaryomyces , Saccharomycetales , Catalasa/genética , Catalasa/metabolismo , Peróxido de Hidrógeno/toxicidad , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
6.
Ecotoxicol Environ Saf ; 181: 481-490, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31228824

RESUMEN

Peroxidases and catalases are well-known antioxidant enzymes produced in almost all living organisms for the elimination of reactive oxygen species (ROS) and thus they prevent the occurrence of oxidative stress. In our study we focused on two soil fungi of the family Chaetomiaceae (mesophilic Chaetomium cochliodes and its thermophilic counterpart C. thermophilum var. dissitum) in order to explore the presence of peroxidase and catalase genes, formation of their native transcripts and protective effect of corresponding translation products in a case study. Predicted genes of our interest were confirmed by genomic PCR and their inducible transcripts by RT-PCR. We were able to quantify the expression levels of newly discovered fungal heme peroxidases and catalases with the reverse-transcription quantitative real-time PCR method. We compared obtained quantitative levels of mRNA production with the level of corresponding extracellular protein occurrence as detected with monitoring their specific peroxidase and catalase activities directly in the cultivation media at optimal growth temperatures. The presence of secretory Catalase 2 from C. thermophilum var. dissitum was detected and identified with mass spectrometry approach directly in the growth medium. This unique catalase is phylogenetically closely related with a previously described catalase-phenol oxidase thus representing an effective and versatile antioxidant in the environment of the fungal mycelia also involved in the catabolism of recalcitrant phenolic substances.


Asunto(s)
Ascomicetos/metabolismo , Catalasa/metabolismo , Espacio Extracelular/enzimología , Estrés Oxidativo , Peroxidasas/metabolismo , Antioxidantes/metabolismo , Ascomicetos/clasificación , Ascomicetos/enzimología , Ascomicetos/genética , Catalasa/genética , Medios de Cultivo/metabolismo , Espacio Extracelular/metabolismo , Oxidación-Reducción , Peroxidasas/genética , Filogenia , Temperatura
7.
Artículo en Inglés | MEDLINE | ID: mdl-28739793

RESUMEN

In this study, we characterize the impact of antioxidative enzymes in amphotericin B (AmB)-resistant (ATR) and rare AmB-susceptible (ATS) clinical Aspergillus terreus isolates. We elucidate expression profiles of superoxide dismutase (SOD)- and catalase (CAT)-encoding genes, enzymatic activities of SODs, and superoxide anion production and signaling pathways involved in the oxidative stress response (OSR) in ATS and ATR strains under AmB treatment conditions. We show that ATR strains possess almost doubled basal SOD activity compared to that of ATS strains and that ATR strains exhibit an enhanced OSR, with significantly higher sod2 mRNA levels and significantly increased cat transcripts in ATR strains upon AmB treatment. In particular, inhibition of SOD and CAT proteins renders resistant isolates considerably susceptible to the drug in vitro In conclusion, this study shows that SODs and CATs are crucial for AmB resistance in A. terreus and that targeting the OSR might offer new treatment perspectives for resistant species.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Catalasa/metabolismo , Estrés Oxidativo/fisiología , Superóxido Dismutasa/metabolismo , Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Catalasa/antagonistas & inhibidores , Catalasa/genética , Farmacorresistencia Fúngica/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética
8.
Fungal Genet Biol ; 100: 22-32, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28093309

RESUMEN

Dimorphic human pathogenic fungi interact with host effector cells resisting their microbicidal mechanisms. Yeast cells are able of surviving within the tough environment of the phagolysosome by expressing an antioxidant defense system that provides protection against host-derived reactive oxygen species (ROS). This includes the production of catalases (CATs). Here we identified and analyzed the role of CAT isoforms in Paracoccidioides, the etiological agent of paracoccidioidomycosis. Firstly, we found that one of these isoforms was absent in the closely related dimorphic pathogen Coccidioides and dermatophytes, but all of them were conserved in Paracoccidioides, Histoplasma and Blastomyces species. We probed the contribution of CATs in Paracoccidioides by determining the gene expression levels of each isoform through quantitative RT-qPCR, in both the yeast and mycelia phases, and during the morphological switch (transition and germination), as well as in response to oxidative agents and during interaction with neutrophils. PbCATP was preferentially expressed in the pathogenic yeast phase, and was associated to the response against exogenous H2O2. Therefore, we created and analyzed the virulence defects of a knockdown strain for this isoform, and found that CATP protects yeast cells from H2O2 generated in vitro and is relevant during lung infection. On the other hand, CATA and CATB seem to contribute to ROS homeostasis in Paracoccidioides cells, during endogenous oxidative stress. CAT isoforms in Paracoccidioides might be coordinately regulated during development and dimorphism, and differentially expressed in response to different stresses to control ROS homeostasis during the infectious process, contributing to the virulence of Paracoccidioides.


Asunto(s)
Antioxidantes/metabolismo , Catalasa/metabolismo , Estrés Oxidativo/genética , Paracoccidioidomicosis/metabolismo , Catalasa/genética , Regulación Fúngica de la Expresión Génica , Histoplasma/genética , Humanos , Peróxido de Hidrógeno/química , Micelio/genética , Paracoccidioides/enzimología , Paracoccidioidomicosis/enzimología , Paracoccidioidomicosis/microbiología , Especies Reactivas de Oxígeno/metabolismo
9.
BMC Gastroenterol ; 16(1): 128, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27724868

RESUMEN

BACKGROUND: This study examines the dual role of Escherichia coli in the course of ulcerative colitis (UC). The intestinal microbiota is considered to play an important role in UC pathogenesis, but how E. coli contributes to inflammation in UC is still unknown. On the one hand, we demonstrated that there was a significant increase in the number of E. coli at the sites of inflammation in patients with UC, which can lead to immune system activation, whilst, on the other hand, E. coli may contribute to the resolution of inflammatory reactions since E. coli can inhibit hydroxyl radical formation by eliminating substrates of the Fenton reaction, by assimilating ferrous iron (Fe2+) and inducing the decomposition of hydrogen peroxide (H2O2). On this way, E. coli may affect the initiation and/or prolongation of remission stages of UC. METHODS: Ten E. coli strains were isolated from the colonic mucosa of patients in the acute phase of UC. Using PCR, we examined the presence of genes encoding catalases (katG and katE) and proteins participating in iron acquisition (feoB, fepA, fhuA, fecA, iroN, fyuA, and iutA) in these E. coli strains. To determine if iron ions influence the growth rate of E. coli and its ability to decompose H2O2, we grew E. coli in defined culture media without iron (M9(-)) or with ferrous ions (M9(Fe2+)). Expression levels of genes encoding catalases were examined by real-time PCR. RESULTS: All investigated E. coli strains had catalase genes (katG, katE), genes coding for receptors for Fe2+ (feoB) and at least one of the genes responsible for iron acquisition related to siderophores (fepA, fhuA, fecA, iroN, fyuA, iutA). E. coli cultured in M9(Fe2+) grew faster than E. coli in M9(-). The presence of Fe2+ in the media contributed to the increased rate of H2O2 decomposition by E. coli and induced katG gene expression. CONCLUSIONS: E. coli eliminates substrates of the Fenton reaction by assimilating Fe2+ and biosynthesizing enzymes that catalyze H2O2 decomposition. Thus, E. coli can inhibit hydroxyl radical formation, and affects the initiation and/or prolongation of remission stages of UC.


Asunto(s)
Colitis Ulcerosa/microbiología , Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Adulto , Proteínas de la Membrana Bacteriana Externa/análisis , Proteínas de la Membrana Bacteriana Externa/metabolismo , Catalasa/análisis , Catalasa/genética , Catalasa/metabolismo , Proteínas de Transporte de Catión/análisis , Proteínas de Transporte de Catión/metabolismo , Colitis Ulcerosa/patología , Colon/microbiología , Progresión de la Enfermedad , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mucosa Intestinal/microbiología , Hierro/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Remisión Espontánea , Sideróforos/genética
10.
Fish Shellfish Immunol ; 44(1): 321-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25707597

RESUMEN

Antioxidative defense renders a significant protection against environmental stress in organisms and maintains the correct redox balance in cells, thereby supporting proper immune function. Catalase is an indispensable antioxidant in organisms that detoxifies hydrogen peroxides produced in cellular environments. In this study, we sought to molecularly characterize a homolog of catalase (RfCat), identified from black rockfish (Sebastes schlegelii). RfCat consists of a 1581 bp coding region for a protein of 527 amino acids, with a predicted molecular weight of 60 kD. The protein sequence of RfCat harbored similar domain architecture to known catalases, containing a proximal active site signature and proximal heme ligand signature, and further sharing prominent homology with its teleostan counterparts. As affirmed by multiple sequence alignments, most of the functionally important residues were well conserved in RfCat. Furthermore, our phylogenetic analysis indicates its common vertebrate ancestral origin and a close evolutionary relationship with teleostan catalases. Recombinantly expressed RfCat demonstrated prominent peroxidase activity that varied with different substrate and protein concentrations, and protected against DNA damage. RfCat mRNA was ubiquitously expressed among different tissues examined, as detected by qPCR. In addition, RfCat mRNA expression was modulated in response to pathogenic stress elicited by Streptococcus iniae and poly I:C in blood and spleen tissues. Collectively, our findings indicate that RfCat may play an indispensable role in host response to oxidative stress and maintain a correct redox balance after a pathogen invasion.


Asunto(s)
Catalasa/genética , Catalasa/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perciformes/genética , Sepsis/metabolismo , Secuencia de Aminoácidos , Animales , Catalasa/química , Daño del ADN , ADN Complementario/genética , Proteínas de Peces/química , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Datos de Secuencia Molecular , Peroxidasa/metabolismo , Filogenia , Poli I-C/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Bazo/metabolismo , Streptococcus
11.
J Food Sci ; 89(2): 1167-1186, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193164

RESUMEN

Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-ß-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-ß-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-ß-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-ß-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.


Asunto(s)
Aspergillus flavus , Gliceraldehído/análogos & derivados , Propano , beta-Glucanos , Catalasa/metabolismo , Esporas Fúngicas/metabolismo , Antifúngicos/química , Quitina Sintasa/metabolismo
12.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 101-112, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265876

RESUMEN

Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Šlonger and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues.


Asunto(s)
Ácido Glutámico , Peróxido de Hidrógeno , Catalasa/química , Peróxido de Hidrógeno/química , Hemo/química , Treonina
13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 398-408, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23519415

RESUMEN

Scytalidium thermophilum produces a catalase with phenol oxidase activity (CATPO) that catalyses the decomposition of hydrogen peroxide into oxygen and water and also oxidizes various phenolic compounds. A codon-optimized catpo gene was cloned and expressed in Escherichia coli. The crystal structures of native and recombinant S. thermophilum CATPO and two variants, H82N and V123F, were determined at resolutions of 2.7, 1.4, 1.5 and 1.9 Å, respectively. The structure of CATPO reveals a homotetramer with 698 residues per subunit and with strong structural similarity to Penicillium vitale catalase. The haem component is cis-hydroxychlorin γ-spirolactone, which is rotated 180° with respect to small-subunit catalases. The haem-binding pocket contains two highly conserved water molecules on the distal side. The H82N mutation resulted in conversion of the native d-type haem to a b-type haem. Kinetic studies of the H82N and V123F mutants indicate that both activities are likely to be associated with the haem centre and suggest that the secondary oxidase activity may be a general feature of catalases in the absence of hydrogen peroxide.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/genética , Catalasa/química , Regulación Fúngica de la Expresión Génica , Monofenol Monooxigenasa/química , Catalasa/genética , Catalasa/metabolismo , Cristalografía por Rayos X , Activación Enzimática/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-24192374

RESUMEN

Catalases are enzymes that play an important role in the detoxification of hydrogen peroxide (H2O2) in aerobic organisms. Among catalases, haem-containing catalases are ubiquitously distributed and their enzymatic mechanism is very well understood. On the other hand, manganese catalases that contain a bimanganese core in the active site have been less well characterized and their mode of action is not fully understood. The genome of Anabaena PCC 7120 does not show the presence of a haem catalase-like gene; instead, two ORFs encoding manganese catalases (Mn-catalases) are present. Here, the crystallization and preliminary X-ray crystallographic analysis of KatB, one of the two Mn-catalases from Anabaena, are reported. KatB was crystallized using the hanging-drop vapour-diffusion method with PEG 400 as a precipitant and calcium acetate as an additive. Diffraction data were collected in-house on an Agilent SuperNova system using a microfocus sealed-tube X-ray source. The crystal diffracted to 2.2 Šresolution at 100 K. The tetragonal crystal belonged to space group P4(1)2(1)2 (or enantiomer), with unit-cell parameters a = b = 101.87, c = 138.86 Å. Preliminary X-ray diffraction analysis using the Matthews coefficient and self-rotation function suggests the presence of a trimer in the asymmetric unit.


Asunto(s)
Anabaena/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Catalasa/química , Catalasa/aislamiento & purificación , Cristalización , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida
15.
Artículo en Inglés | MEDLINE | ID: mdl-23545640

RESUMEN

Almost all monofunctional haem catalases contain a highly conserved core containing the active site, which is connected to the exterior of the enzyme by three channels. These channels have been identified as potential routes for substrate flow and product release. To further investigate the role of these molecular channels, a series of mutants of Scytalidium thermophilum catalase were generated. The three-dimensional structures of four catalase variants, N155A, V123A, V123C and V123T, have been determined at resolutions of 2.25, 1.93, 1.9 and 1.7 Å, respectively. The V123C variant contains a new covalent bond between the S atom of Cys123 and the imidazole ring of the essential His82. This variant enzyme has only residual catalase activity and contains haem b instead of the normal haem d. The H82A variant demonstrates low catalase and phenol oxidase activities (0.2 and 20% of those of recombinant wild-type catalase-phenol oxidase, respectively). The N155A and N155H variants exhibit 4.5 and 3% of the wild-type catalase activity and contain haem d, showing that Asn155 is essential for catalysis but is not required for the conversion of haem b to haem d. Structural analysis suggests that the cause of the effect of these mutations on catalysis is the disruption of the ability of dioxygen substrates to efficiently access the active site. Additional mutants have been characterized biochemically to further probe the roles of the different channels. Introducing smaller or polar side chains in place of Val123 reduces the catalase activity. The F160V, F161V and F168V mutants show a marked decrease in catalase activity but have a much lower effect on the phenol oxidase activity, despite containing substoichiometric amounts of haem.


Asunto(s)
Ascomicetos/enzimología , Catalasa/química , Dominio Catalítico , Catalasa/genética , Modelos Moleculares , Mutación
16.
Free Radic Biol Med ; 179: 266-276, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34793931

RESUMEN

KatB, a hexameric Mn-catalase, plays a vital role in overcoming oxidative and salinity stress in the ecologically important, N2-fixing cyanobacterium, Anabaena. The 5 N-terminal residues of KatB, which show a high degree of conservation in cyanobacteria, form an antiparallel ß-strand at the subunit interface of the KatB hexamer. In this study, the contribution of these N-terminal non-active site residues, towards the maintenance of the structure, biochemical properties, and redox balance was evaluated. Each N-terminal amino acid residue from the 2nd to the 7th position of KatB was individually mutated to Ala (to express KatBF2A/KatBF3A/KatBH4A/KatBK5E/KatBK6A/KatBE7A) or this entire 6 amino acid stretch was deleted (to yield KatBTrunc). All the above-mentioned KatB variants, along with the wild-type KatB protein (KatBWT), were overproduced in E. coli and purified. In comparison to KatBWT, the KatBF2A/KatBH4A/KatBTrunc proteins were less compact, more prone to chemical/thermal denaturation, and were unexpectedly inactive. KatBF3A/KatBK5E/KatBK6A showed biophysical/biochemical properties that were in between that of KatBWT and KatBF2A/KatBH4A/KatBTrunc. Surprisingly, KatBE7A was more thermostable with higher activity than KatBWT. On exposure to H2O2, E. coli expressing KatBWT/KatBE7A showed considerably reduced formation of ROS and increased survival than the other KatB variants. Utilizing the KatB structure, the molecular basis responsible for the altered stability/activity of the KatB mutants was delineated. This study demonstrates the physiological importance of the N-terminal ß-strand of Mn-catalases in combating H2O2 stress and shows that the non-active site residues can be used for rational protein engineering to develop Mn-catalases with improved characteristics.


Asunto(s)
Antioxidantes , Cianobacterias , Catalasa/genética , Cianobacterias/genética , Escherichia coli/genética , Peróxido de Hidrógeno
17.
Front Microbiol ; 13: 1079710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726575

RESUMEN

Pseudomonas aeruginosa gidA, which encodes a putative tRNA-modifying enzyme, is associated with a variety of virulence phenotypes. Here, we demonstrated that P. aeruginosa gidA is responsible for the modifications of uridine in tRNAs in vivo. Loss of gidA was found to have no impact on the mRNA levels of katA and katB, but it decreased KatA and KatB protein levels, resulting in decreased total catalase activity and a hydrogen peroxide-sensitive phenotype. Furthermore, gidA was found to affect flagella-mediated motility and biofilm formation; and it was required for the full virulence of P. aeruginosa in both Caenorhabditis elegans and macrophage models. Together, these observations reveal the posttranscriptional impact of gidA on the oxidative stress response, highlight the complexity of catalase gene expression regulation, and further support the involvement of gidA in the virulence of P. aeruginosa.

18.
Antioxidants (Basel) ; 11(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35624843

RESUMEN

Bacterial and fungal large-size subunit catalases (LSCs) are like small-size subunit catalases (SSCs) but have an additional C-terminal domain (CT). The catalytic domain is conserved at both primary sequence and structural levels and its amino acid composition is optimized to select H2O2 over water. The CT is structurally conserved, has an amino acid composition similar to very stable proteins, confers high stability to LSCs, and has independent molecular chaperone activity. While heat and denaturing agents increased Neurospora crassa catalase-1 (CAT-1) activity, a CAT-1 version lacking the CT (C63) was no longer activated by these agents. The addition of catalase-3 (CAT-3) CT to the CAT-1 or CAT-3 catalase domains prevented their heat denaturation in vitro. Protein structural alignments indicated CT similarity with members of the DJ-1/PfpI superfamily and the CT dimers present in LSCs constitute a new type of symmetric dimer within this superfamily. However, only the bacterial Hsp31 proteins show sequence similarity to the bacterial and fungal catalase mobile coil (MC) and are phylogenetically related to MC_CT sequences. LSCs might have originated by fusion of SSC and Hsp31 encoding genes during early bacterial diversification, conferring at the same time great stability and molecular chaperone activity to the novel catalases.

19.
Acta Crystallogr D Struct Biol ; 77(Pt 3): 369-379, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33645540

RESUMEN

Heme catalases remove hydrogen peroxide by catalyzing its dismutation into water and molecular oxygen, thereby protecting the cell from oxidative damage. The Atacama plateau in northern Argentina, located 4000 m above sea level, is a desert area characterized by extreme UV radiation, high salinity and a large temperature variation between day and night. Here, the heme catalase KatE1 from an Atacama Acinetobacter sp. isolate was cloned, expressed and purified, with the aim of investigating its extremophilic properties. Kinetic and stability assays indicate that KatE1 is maximally active at 50°C in alkaline media, with a nearly unchanged specific activity between 0°C and 40°C in the pH range 5.5-11.0. In addition, its three-dimensional crystallographic structure was solved, revealing minimal structural differences compared with its mesophilic and thermophilic analogues, except for a conserved methionine residue on the distal heme side, which is proposed to comprise a molecular adaptation to oxidative damage.


Asunto(s)
Aclimatación , Acinetobacter/enzimología , Proteínas Bacterianas/química , Catalasa/química , Frío , Argentina , Sitios de Unión , Cristalografía por Rayos X , Estabilidad de Enzimas , Hemo/química , Modelos Moleculares , NADP/química , Conformación Proteica
20.
Front Plant Sci ; 12: 770398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721495

RESUMEN

Theanine, a unique non-proteinogenic amino acid, is one of the most abundant secondary metabolites in tea. Its content largely determines green tea quality and price. However, its physiological roles in tea plants remain largely unknown. Here, we showed that salt stress significantly increased the accumulation of glutamate, glutamine, alanine, proline, and γ-aminobutyric acid, as well as theanine, in the new shoots of tea plants. We further found that salt stress induced the expression of theanine biosynthetic genes, including CsGOGATs, CsAlaDC, and CsTSI, suggested that salt stress induced theanine biosynthesis. Importantly, applying theanine to the new shoots significantly enhanced the salt stress tolerance. Similar effects were also found in a model plant Arabidopsis. Notably, exogenous theanine application increased the antioxidant activity of the shoots under salt stress, suggested by reduced the reactive oxygen species accumulation and lipid peroxidation, as well as by the increased SOD, CAT, and APX activities and expression of the corresponding genes. Finally, genetic evidence supported that catalase-mediated antioxidant scavenging pathway is required for theanine-induced salt stress tolerance. Taken together, this study suggested that salt stress induces theanine biosynthesize in tea plants to enhance the salt stress tolerance through a CAT-dependent redox homeostasis pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA