Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.782
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781967

RESUMEN

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Asunto(s)
Matriz Extracelular , Mucosa Intestinal , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesodermo/metabolismo , Mesodermo/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Morfogénesis , Metaloproteinasas de la Matriz/metabolismo
2.
Cell ; 185(21): 3896-3912.e22, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36167070

RESUMEN

Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.


Asunto(s)
Axones/metabolismo , Estrés del Retículo Endoplásmico , Receptores Odorantes , Animales , Ratones , Bulbo Olfatorio , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Factores de Transcripción/metabolismo
3.
Annu Rev Cell Dev Biol ; 39: 123-144, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315160

RESUMEN

Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.

4.
Cell ; 184(7): 1914-1928.e19, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33730596

RESUMEN

Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.


Asunto(s)
Embrión no Mamífero/fisiología , Desarrollo Embrionario , Animales , Blastodermo/citología , Blastodermo/fisiología , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Embrión no Mamífero/citología , Morfolinos/metabolismo , Reología , Viscosidad , Pez Cebra/crecimiento & desarrollo
5.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237253

RESUMEN

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Motivos de Nucleótidos/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Cell ; 184(14): 3702-3716.e30, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34133940

RESUMEN

Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required ß1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.


Asunto(s)
Uniones Célula-Matriz/metabolismo , Morfogénesis , Animales , Membrana Basal/metabolismo , Adhesión Celular , División Celular , Movimiento Celular , Rastreo Celular , Embrión de Mamíferos/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Integrinas/metabolismo , Ratones , Modelos Biológicos , Glándulas Salivales/citología , Glándulas Salivales/embriología , Glándulas Salivales/metabolismo , Transcriptoma/genética
7.
Annu Rev Cell Dev Biol ; 38: 349-374, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35562853

RESUMEN

Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.


Asunto(s)
Citoesqueleto de Actina , Actomiosina , Adhesión Celular
8.
Cell ; 179(4): 923-936.e11, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675499

RESUMEN

Tight junctions are cell-adhesion complexes that seal tissues and are involved in cell polarity and signaling. Supra-molecular assembly and positioning of tight junctions as continuous networks of adhesion strands are dependent on the membrane-associated scaffolding proteins ZO1 and ZO2. To understand how zona occludens (ZO) proteins organize junction assembly, we performed quantitative cell biology and in vitro reconstitution experiments. We discovered that ZO proteins self-organize membrane-attached compartments via phase separation. We identified the multivalent interactions of the conserved PDZ-SH3-GuK supra-domain as the driver of phase separation. These interactions are regulated by phosphorylation and intra-molecular binding. Formation of condensed ZO protein compartments is sufficient to specifically enrich and localize tight-junction proteins, including adhesion receptors, cytoskeletal adapters, and transcription factors. Our results suggest that an active-phase transition of ZO proteins into a condensed membrane-bound compartment drives claudin polymerization and coalescence of a continuous tight-junction belt.


Asunto(s)
Uniones Estrechas/genética , Proteínas de la Zonula Occludens/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-2/genética , Animales , Sitios de Unión/genética , Adhesión Celular/genética , Polaridad Celular/genética , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/genética , Dominios PDZ/genética , Fosfoproteínas/genética , Fosforilación/genética , Unión Proteica/genética , Transducción de Señal/genética , Uniones Estrechas/metabolismo , Proteínas de la Zonula Occludens/química , Proteínas de la Zonula Occludens/ultraestructura , Proteína de la Zonula Occludens-1/química , Proteína de la Zonula Occludens-1/ultraestructura , Proteína de la Zonula Occludens-2/química , Proteína de la Zonula Occludens-2/ultraestructura , Dominios Homologos src/genética
9.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442408

RESUMEN

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Asunto(s)
Dipeptidasas/metabolismo , Neutrófilos/fisiología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Animales , Cilastatina/farmacología , Cilastatina/uso terapéutico , Dipeptidasas/antagonistas & inhibidores , Dipeptidasas/genética , Modelos Animales de Enfermedad , Endotoxemia/mortalidad , Endotoxemia/patología , Endotoxemia/prevención & control , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Infiltración Neutrófila/efectos de los fármacos , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Tasa de Supervivencia
10.
Cell ; 169(4): 621-635.e16, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475893

RESUMEN

The folding of the mammalian cerebral cortex into sulci and gyri is thought to be favored by the amplification of basal progenitor cells and their tangential migration. Here, we provide a molecular mechanism for the role of migration in this process by showing that changes in intercellular adhesion of migrating cortical neurons result in cortical folding. Mice with deletions of FLRT1 and FLRT3 adhesion molecules develop macroscopic sulci with preserved layered organization and radial glial morphology. Cortex folding in these mutants does not require progenitor cell amplification but is dependent on changes in neuron migration. Analyses and simulations suggest that sulcus formation in the absence of FLRT1/3 results from reduced intercellular adhesion, increased neuron migration, and clustering in the cortical plate. Notably, FLRT1/3 expression is low in the human cortex and in future sulcus areas of ferrets, suggesting that intercellular adhesion is a key regulator of cortical folding across species.


Asunto(s)
Movimiento Celular , Corteza Cerebral/fisiología , Glicoproteínas de Membrana/metabolismo , Neuronas/citología , Animales , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Hurones , Humanos , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/análisis , Ratones , Ratones Noqueados , Células Piramidales/metabolismo
11.
Annu Rev Cell Dev Biol ; 34: 1-28, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30059630

RESUMEN

Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.


Asunto(s)
Biología Celular/tendencias , Citoplasma/genética , Filamentos Intermedios/genética , Microtúbulos/genética , Actinas/química , Actinas/genética , Citoplasma/química , Citoesqueleto/química , Citoesqueleto/genética , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Filamentos Intermedios/química , Microtúbulos/química , Mitosis/genética , Transducción de Señal/genética
12.
Genes Dev ; 38(9-10): 393-414, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38834239

RESUMEN

The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.


Asunto(s)
Endocitosis , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Animales , Mesodermo/embriología , Mesodermo/metabolismo , Transducción de Señal/genética , Endocitosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Desarrollo Embrionario/genética , Transporte de Proteínas , Mutación
13.
Physiol Rev ; 103(3): 2271-2319, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731030

RESUMEN

The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.


Asunto(s)
Miocardio , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/fisiología , Miocardio/metabolismo , Uniones Comunicantes/metabolismo , Arritmias Cardíacas
14.
Cell ; 163(7): 1770-1782, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687361

RESUMEN

We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a nine-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the six dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Sinapsis , Secuencia de Aminoácidos , Animales , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/química , Larva/metabolismo , Modelos Moleculares , Familia de Multigenes , Mapas de Interacción de Proteínas , Alineación de Secuencia
15.
Annu Rev Cell Dev Biol ; 32: 491-526, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27576118

RESUMEN

Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.


Asunto(s)
Movimiento Celular , Plasticidad de la Célula , Simulación por Computador , Animales , Humanos , Modelos Biológicos
16.
Annu Rev Genet ; 55: 1-21, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34280314

RESUMEN

Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , Proteínas Fúngicas/metabolismo , Hifa/genética , Hifa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
17.
EMBO J ; 43(18): 4000-4019, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39060516

RESUMEN

Ageing and fertility are intertwined. Germline loss extends the lifespan in various organisms, termed gonadal longevity. However, the original longevity signal from the somatic gonad remains poorly understood. Here, we focused on the interaction between germline stem cells (GSCs) and their niche, the distal tip cells (DTCs), to explore the barely known longevity signal from the somatic gonad in C. elegans. We found that removing germline disrupts the cell adhesions between GSC and DTC, causing a significant transcriptomic change in DTC through hmp-2/ß-catenin and two GATA transcription factors, elt-3 and pqm-1 in this niche cell. Inhibiting elt-3 and pqm-1 in DTC suppresses gonadal longevity. Moreover, we further identified the TGF-ß ligand, tig-2, as the cytokine from DTC upon the loss of germline, which evokes the downstream gonadal longevity signalling throughout the body. Our findings thus reveal the source of the longevity signalling in response to germline removal, highlighting the stem cell niche as a critical signalling hub in ageing.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Adhesión Celular , Células Germinativas , Longevidad , Nicho de Células Madre , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Células Germinativas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Madre/metabolismo , Células Madre/citología , Transducción de Señal , Gónadas/metabolismo
18.
Immunity ; 51(3): 561-572.e5, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31402260

RESUMEN

Lymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing. Unbiased clustering revealed six major types of human LECs. LECs lining the subcapsular sinus (SCS) of LNs abundantly expressed neutrophil chemoattractants, whereas LECs lining the medullary sinus (MS) expressed a C-type lectin CD209. Binding of a carbohydrate Lewis X (CD15) to CD209 mediated neutrophil binding to the MS. The neutrophil-selective homing by MS LECs may retain neutrophils in the LN medulla and allow lymph-borne pathogens to clear, preventing their spread through LNs in humans. Our study provides a comprehensive characterization of LEC heterogeneity and unveils a previously undefined role for medullary LECs in human immunity.


Asunto(s)
Células Endoteliales/inmunología , Neutrófilos/inmunología , Animales , Moléculas de Adhesión Celular/inmunología , Células Cultivadas , Humanos , Lectinas Tipo C/inmunología , Antígeno Lewis X/inmunología , Ganglios Linfáticos/inmunología , Vasos Linfáticos/inmunología , Ratones Endogámicos C57BL , Receptores de Superficie Celular/inmunología , Encuestas y Cuestionarios
19.
Genes Dev ; 34(23-24): 1735-1752, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184218

RESUMEN

FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Transducción de Señal/genética , Animales , Adhesión Celular/genética , Muerte Celular/genética , Células Cultivadas , Ratones , Mutación , Cresta Neural/citología , Proteínas Quinasas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
20.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456551

RESUMEN

Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs ß- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.


Asunto(s)
Cadherinas , Nicho de Células Madre , Nicho de Células Madre/genética , Cadherinas/genética , Cadherinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transducción de Señal , Cateninas/genética , Cateninas/metabolismo , Músculo Esquelético/metabolismo , Adhesión Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA