Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Nanobiotechnology ; 21(1): 138, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37106405

RESUMEN

Since the successful clinical trial of AuroShell for photothermal therapy, there is currently intense interest in developing gold-based core-shell structures with near-infrared (NIR) absorption ranging from NIR-I (650-900 nm) to NIR-II (900-1700 nm). Here, we propose a seed-mediated successive growth approach to produce gold nanoshells on the surface of the nanoscale metal-organic framework (NMOF) of UiO-66-NH2 (UiO = the University of Oslo) in one pot. The key to this strategy is to modulate the proportion of the formaldehyde (reductant) and its regulator / oxidative product of formic acid to harness the particle nucleation and growth rate within the same system. The gold nanoshells propagate through a well-oriented and controllable diffusion growth pattern (points → facets → octahedron), which has not been identified. Most strikingly, the gold nanoshells prepared hereby exhibit an exceedingly broad and strong absorption in NIR-II with a peak beyond 1300 nm and outstanding photothermal conversion efficiency of 74.0%. Owing to such superior performance, these gold nanoshells show promising outcomes in photoacoustic (PA), computed tomography (CT), and photothermal imaging-guided photothermal therapy (PTT) for breast cancer, as demonstrated both in vitro and in vivo.


Asunto(s)
Nanocáscaras , Nanocáscaras/química , Terapia Fototérmica , Oro/química , Imagen Multimodal , Fototerapia
2.
Angew Chem Int Ed Engl ; 60(10): 5363-5369, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33245615

RESUMEN

We designed and synthesized A2 B2 type tetraphenyl benzene monomers (p-, m-, and o-TetPB) which have the para-, meta, and ortho-substituted isomeric structures, for the direct construction of isomeric frameworks. Interestingly, both kagome (kgm) and monoclinic square (sql) framework isomers are produced from either p-TetPB (C2h symmetry) or m-TetPB (C2v symmetry) by changing reaction solvents, while their isomeric structures are characterized by X-ray diffraction, computational simulation, microscopy, and sorption isotherm measurements. Only sql frameworks was formed for o-TetPB (C2v symmetry), irrespective of reaction solvents. These results disclose a unique feature in the framework structural formation, that is, the geometry of monomers directs and dominates the lattice growth process while the solvent plays a role in the perturbation of chain growth pattern. The isomeric frameworks exhibit highly selective adsorption of vitamin B12 owing to pore shape and size differences.

3.
Angew Chem Int Ed Engl ; 60(19): 10950-10956, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33626229

RESUMEN

One-dimensional (1D) and 2D structures by crystallization-driven self-assembly of block copolymers (BCPs) can form fascinating hierarchical structures through secondary self-assembly. But examples of 3D structures formed via hierarchical self-assembly are rare. Here we report seeded growth experiments in decane of a poly(ferrocenyldimethylsilane) BCP with an amphiphilic corona forming block in which lenticular platelets grow into classic spherulite-like uniform colloidally stable structures. These 3D objects are spherically symmetric on the exterior, but asymmetric near the core, where there is a more open structure consisting of sheaf-like leaves. The most remarkable aspect of these experiments is that growth stops at different stages of growth process, depending upon how much unimer is added in the seeded growth step. The system provides a model for studying spherulitic growth where real-time observations on their growth at different stages remains challenging.

4.
Int J Phytoremediation ; 21(11): 1080-1089, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044608

RESUMEN

Surfactant is an emerging and popular pollutant in both rural and urban areas and its treatment efficacy by phytoremediation is rarely reported. Water hyacinth was utilized to clean anionic surfactant sodium dodecyl sulfate (SDS) in water and its growth and physiological activities were regulated with Chromolaena odorata L. extract. SDS was effectively removed from the water and then transferred to both root and aerial part of water hyacinth. Part of SDS was converted into low-molecular weight degradation intermediates by the hydrogen abstraction reactions in water hyacinth. The removal efficiency and the degradation of SDS were evidently strengthened accompanying with enhanced root activity and ascorbate peroxidase (APX) activity in the presence of Chromolaena odorata L. extract. Meanwhile, the growth of water hyacinth was effectively controlled, exhibiting low-growth rate (≤0.036 g.day-1). Furthermore, the root was considered as the major organ to degrade SDS, which was correlated to the remarkable increase in APX activity and a slight increase in root activity under both SDS and extract stress. In conclusion, water hyacinth managed with Chromolaena odorata L. extract should be proposed as an eco-friendly biotechnical treatment for the surfactant.


Asunto(s)
Eichhornia , Contaminantes Químicos del Agua , Biodegradación Ambiental , Dodecil Sulfato de Sodio , Aguas Residuales
5.
Nano Lett ; 16(10): 6109-6116, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27579486

RESUMEN

Vertical heterostructures based on two-dimensional layered materials, such as stacked graphene and hexagonal boron nitride (G/h-BN), have stimulated wide interest in fundamental physics, material sciences and nanoelectronics. To date, it still remains challenging to obtain high quality G/h-BN heterostructures concurrently with controlled nucleation density and thickness uniformity. In this work, with the aid of the well-defined poly(methyl methacrylate) seeds, effective control over the nucleation densities and locations of graphene domains on the predeposited h-BN monolayers was realized, leading to the formation of patterned G/h-BN arrays or continuous films. Detailed spectroscopic and morphological characterizations further confirmed that ∼85.7% of such monolayer graphene domains were of single-crystalline nature with their domain sizes predetermined throughout seed interspacing. Density functional theory calculations suggested that a self-terminated growth mechanism can be applied for the related graphene growth on h-BN/Cu. In turn, as-constructed field-effect transistor arrays based on such synthesized single-crystalline G/h-BN patterning were found to be compatible with fabricating devices with nice and steady performance, hence holding great promise for the development of next-generation graphene-based electronics.

6.
Natl Sci Rev ; 11(8): nwae189, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39007000

RESUMEN

A major impediment to the development of the efficient use of artificial photosynthesis is the lack of highly selective and efficient photocatalysts toward the conversion of CO2 by sunlight energy at room temperature and ambient pressure. After many years of hard work, we finally completed the synthesis of graphdiyne-based palladium quantum dot catalysts containing high-density metal atom steps for selective artificial photosynthesis. The well-designed interface structure of the catalyst is composed of electron-donor and acceptor groups, resulting in the obvious incomplete charge-transfer phenomenon between graphdiyne and plasmonic metal nanostructures on the interface. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on its mechanism reveal that the synergism between 'hot electron' from local surface plasmon resonance and rapid photogenerated carrier separation at the ohmic contact interface accelerates the multi-electron reaction kinetics. The catalyst can selectively synthesize CH4 directly from CO2 and H2O with selectivity of near 100% at room temperature and pressure, and exhibits transformative performance, with an average CH4 yield of 26.2 µmol g-1 h-1 and remarkable long-term stability.

7.
Small ; 9(18): 3043-50, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23589320

RESUMEN

A new form of nanotubular crystal structure is directly grown by a vapor-phase hydrothermal method via an epitaxial orientated crystal growth mechanism. The as-prepared nanotubes possess a unique multi-tunnel core-shell layered nanotubular structure with droplet shaped polygonal periphery and segmental crystal configuration. They are dimension-tunable and demonstrate superior ion exchange properties in terms of exchange rate and ion accommodating capacity.


Asunto(s)
Nanotecnología/métodos , Nanotubos/química
8.
ACS Appl Mater Interfaces ; 13(17): 20459-20466, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33890473

RESUMEN

Two-dimensional metal-organic frameworks (2D-MOFs) and their derivatives are promising for catalysis, energy storage, gas separation, etc. due to their unique microstructure and physicochemical properties. Many efforts have been devoted to fabricating 2D-MOFs with challenges remaining in yield and fine control of their thickness and lateral size. Here a versatile strategy has been used involving epitaxial, anisotropic, and confined growth of CoNi-MOF-71 nanosheet arrays, giving rise to excellent quantity and controllability of the 2D-MOFs. Electromagnetic (EM) wave absorption performance has been investigated for the resultant 2D Co/Ni/C derivatives. Compared with the bulk counterpart, significantly increased surface area, conductivity, and shape anisotropy for the 2D derivatives result in enhanced interfacial polarization, conductive loss, and magnetic resonance. As such, optimum EM wave absorption of minimum reflection loss RLmin = -49.8 dB and an ultrawide effective adsorption bandwidth EAB = 7.6 GHz can be achieved at a thickness of 2.6 mm. This work not only sheds light on the performance enhancement for 2D absorbers via synergistic effects of multiple attenuation mechanisms but also provides an effective fabrication route of ultrathin MOFs with high yield and uniform size for extended applications in catalysis, electrochemistry, and optoelectronics fields.

9.
Adv Mater ; 32(16): e1906523, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32105375

RESUMEN

Semiconductor nanowires have been playing a crucial role in the development of nanoscale devices for the realization of spin qubits, Majorana fermions, single photon emitters, nanoprocessors, etc. The monolithic growth of site-controlled nanowires is a prerequisite toward the next generation of devices that will require addressability and scalability. Here, combining top-down nanofabrication and bottom-up self-assembly, the growth of Ge wires on prepatterned Si (001) substrates with controllable position, distance, length, and structure is reported. This is achieved by a novel growth process that uses a SiGe strain-relaxation template and can be potentially generalized to other material combinations. Transport measurements show an electrically tunable spin-orbit coupling, with a spin-orbit length similar to that of III-V materials. Also, charge sensing between quantum dots in closely spaced wires is observed, which underlines their potential for the realization of advanced quantum devices. The reported results open a path toward scalable qubit devices using nanowires on silicon.

10.
ACS Nano ; 14(6): 7593-7601, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32491834

RESUMEN

Though chemical vapor deposition (CVD) methods have been widely used in the growth of two-dimensional transition-metal dichalcogenides (2D TMDCs), the controllable fabrication of 2D TMDCs is yet hard to achieve because of the great challenge of concisely controlling the release of precursors vapor, one of the most critical growth kinetic factors. To solve this important issue, here we report the utilization of oxide inhibitors covering Mo source during CVD reactions to manipulate the release of Mo vapor. In contrast to the lack of capability of conventional CVD methods, 2D molybdenum dichalcogenide (MoX2, X = S, Se, Te) monolayers were successfully fabricated through the proposed CVD protocol with the oxide-inhibitor-assisted growth (OIAG) strategy. In this way, despite the fact that only separated MoTe2 flakes were prepared, both MoS2 (continuous and clean) and MoSe2 (continuous but dotted) monolayer films at the scale of centimeter were obtained. The presented OIAG method enables a comprehensive understanding and precise control of the reaction kinetics for improved growth of 2D MoX2.

11.
Adv Mater ; 31(9): e1800690, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30536644

RESUMEN

Controllable fabrication of graphene is necessary for its practical application. Chemical vapor deposition (CVD) approaches based on solid metal substrates with morphology-rich surfaces, such as copper (Cu) and nickel (Ni), suffer from the drawbacks of inhomogeneous nucleation and uncontrollable carbon precipitation. Liquid substrates offer a quasiatomically smooth surface, which enables the growth of uniform graphene layers. The fast surface diffusion rates also lead to unique growth and etching kinetics for achieving graphene grains with novel morphologies. The rheological surface endows the graphene grains with self-adjusted rotation, alignment, and movement that are driven by specific interactions. The intermediary-free transfer or the direct growth of graphene on insulated substrates is demonstrated using liquid metals. Here, the controllable growth process of graphene on a liquid surface to promote the development of attractive liquid CVD strategies is in focus. The exciting progress in controlled growth, etching, self-assembly, and delivery of graphene on a liquid surface is presented and discussed in depth. In addition, prospects and further developments in these exciting fields of graphene growth on a liquid surface are discussed.

12.
Adv Mater ; : e1803665, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30133881

RESUMEN

2D metal-semiconductor heterostructures based on transition metal dichalcogenides (TMDs) are considered as intriguing building blocks for various fields, such as contact engineering and high-frequency devices. Although, a series of p-n junctions utilizing semiconducting TMDs have been constructed hitherto, the realization of such a scheme using 2D metallic analogs has not been reported. Here, the synthesis of uniform monolayer metallic NbS2 on sapphire substrate with domain size reaching to a millimeter scale via a facile chemical vapor deposition (CVD) route is demonstrated. More importantly, the epitaxial growth of NbS2 -WS2 lateral metal-semiconductor heterostructures via a "two-step" CVD method is realized. Both the lateral and vertical NbS2 -WS2 heterostructures are achieved here. Transmission electron microscopy studies reveal a clear chemical modulation with distinct interfaces. Raman and photoluminescence maps confirm the precisely controlled spatial modulation of the as-grown NbS2 -WS2 heterostructures. The existence of the NbS2 -WS2 heterostructures is further manifested by electrical transport measurements. This work broadens the horizon of the in situ synthesis of TMD-based heterostructures and enlightens the possibility of applications based on 2D metal-semiconductor heterostructures.

13.
Nanoscale Res Lett ; 11(1): 175, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27033851

RESUMEN

Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA