Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stat Appl Genet Mol Biol ; 23(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38943434

RESUMEN

Understanding a protein's function based solely on its amino acid sequence is a crucial but intricate task in bioinformatics. Traditionally, this challenge has proven difficult. However, recent years have witnessed the rise of deep learning as a powerful tool, achieving significant success in protein function prediction. Their strength lies in their ability to automatically learn informative features from protein sequences, which can then be used to predict the protein's function. This study builds upon these advancements by proposing a novel model: CNN-CBAM+BiGRU. It incorporates a Convolutional Block Attention Module (CBAM) alongside BiGRUs. CBAM acts as a spotlight, guiding the CNN to focus on the most informative parts of the protein data, leading to more accurate feature extraction. BiGRUs, a type of Recurrent Neural Network (RNN), excel at capturing long-range dependencies within the protein sequence, which are essential for accurate function prediction. The proposed model integrates the strengths of both CNN-CBAM and BiGRU. This study's findings, validated through experimentation, showcase the effectiveness of this combined approach. For the human dataset, the suggested method outperforms the CNN-BIGRU+ATT model by +1.0 % for cellular components, +1.1 % for molecular functions, and +0.5 % for biological processes. For the yeast dataset, the suggested method outperforms the CNN-BIGRU+ATT model by +2.4 % for the cellular component, +1.2 % for molecular functions, and +0.6 % for biological processes.


Asunto(s)
Biología Computacional , Redes Neurales de la Computación , Proteínas , Biología Computacional/métodos , Humanos , Proteínas/genética , Proteínas/metabolismo , Aprendizaje Profundo , Bases de Datos de Proteínas , Algoritmos , Secuencia de Aminoácidos
2.
Front Zool ; 21(1): 10, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561769

RESUMEN

BACKGROUND: Rapid identification and classification of bats are critical for practical applications. However, species identification of bats is a typically detrimental and time-consuming manual task that depends on taxonomists and well-trained experts. Deep Convolutional Neural Networks (DCNNs) provide a practical approach for the extraction of the visual features and classification of objects, with potential application for bat classification. RESULTS: In this study, we investigated the capability of deep learning models to classify 7 horseshoe bat taxa (CHIROPTERA: Rhinolophus) from Southern China. We constructed an image dataset of 879 front, oblique, and lateral targeted facial images of live individuals collected during surveys between 2012 and 2021. All images were taken using a standard photograph protocol and setting aimed at enhancing the effectiveness of the DCNNs classification. The results demonstrated that our customized VGG16-CBAM model achieved up to 92.15% classification accuracy with better performance than other mainstream models. Furthermore, the Grad-CAM visualization reveals that the model pays more attention to the taxonomic key regions in the decision-making process, and these regions are often preferred by bat taxonomists for the classification of horseshoe bats, corroborating the validity of our methods. CONCLUSION: Our finding will inspire further research on image-based automatic classification of chiropteran species for early detection and potential application in taxonomy.

3.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275523

RESUMEN

To enable the timely adjustment of the control strategy of automobile active safety systems, enhance their capacity to adapt to complex working conditions, and improve driving safety, this paper introduces a new method for predicting road surface state information and recognizing road adhesion coefficients using an enhanced version of the MobileNet V3 model. On one hand, the Squeeze-and-Excitation (SE) is replaced by the Convolutional Block Attention Module (CBAM). It can enhance the extraction of features effectively by considering both spatial and channel dimensions. On the other hand, the cross-entropy loss function is replaced by the Bias Loss function. It can reduce the random prediction problem occurring in the optimization process to improve identification accuracy. Finally, the proposed method is evaluated in an experiment with a four-wheel-drive ROS robot platform. Results indicate that a classification precision of 95.53% is achieved, which is higher than existing road adhesion coefficient identification methods.

4.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39066079

RESUMEN

Ensuring the safety of mechanical equipment, gearbox fault diagnosis is crucial for the stable operation of the whole system. However, existing diagnostic methods still have limitations, such as the analysis of single-scale features and insufficient recognition of global temporal dependencies. To address these issues, this article proposes a new method for gearbox fault diagnosis based on MSCNN-LSTM-CBAM-SE. The output of the CBAM-SE module is deeply integrated with the multi-scale features from MSCNN and the temporal features from LSTM, constructing a comprehensive feature representation that provides richer and more precise information for fault diagnosis. The effectiveness of this method has been validated with two sets of gearbox datasets and through ablation studies on this model. Experimental results show that the proposed model achieves excellent performance in terms of accuracy and F1 score, among other metrics. Finally, a comparison with other relevant fault diagnosis methods further verifies the advantages of the proposed model. This research offers a new solution for accurate fault diagnosis of gearboxes.

5.
Entropy (Basel) ; 26(9)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39330143

RESUMEN

Electric motors play a crucial role in self-driving vehicles. Therefore, fault diagnosis in motors is important for ensuring the safety and reliability of vehicles. In order to improve fault detection performance, this paper proposes a motor fault diagnosis method based on vibration signals. Firstly, the vibration signals of each operating state of the motor at different frequencies are measured with vibration sensors. Secondly, the characteristic of Gram image coding is used to realize the coding of time domain information, and the one-dimensional vibration signals are transformed into grayscale diagrams to highlight their features. Finally, the lightweight neural network Xception is chosen as the main tool, and the attention mechanism Convolutional Block Attention Module (CBAM) is introduced into the model to enforce the importance of the characteristic information of the motor faults and realize their accurate identification. Xception is a type of convolutional neural network; its lightweight design maintains excellent performance while significantly reducing the model's order of magnitude. Without affecting the computational complexity and accuracy of the network, the CBAM attention mechanism is added, and Gram's corner field is combined with the improved lightweight neural network. The experimental results show that this model achieves a better recognition effect and faster iteration speed compared with the traditional Convolutional Neural Network (CNN), ResNet, and Xception networks.

6.
J Magn Reson Imaging ; 57(6): 1842-1853, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36219519

RESUMEN

BACKGROUND: Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear. PURPOSE: To investigate the potential of the proposed attention-based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast-enhanced MRI (DCE-MRI). STUDY TYPE: Retrospective. POPULATION: A total of 941 breast cancer patients who underwent DCE-MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts. FIELD STRENGTH/SEQUENCE: A 3.0 T MR scanner, DCE-MRI sequence. ASSESSMENT: A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor-ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan-Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.). STATISTICAL TESTS: Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification. RESULTS: The optimal RCNet model, that is, RCNet-tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet-tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05). DATA CONCLUSION: DCE-MRI-based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Metástasis Linfática , Femenino , Humanos , Neoplasias de la Mama/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
7.
Sensors (Basel) ; 23(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38067989

RESUMEN

With the recent rise in violent crime, the real-time situation analysis capabilities of the prevalent closed-circuit television have been employed for the deterrence and resolution of criminal activities. Anomaly detection can identify abnormal instances such as violence within the patterns of a specified dataset; however, it faces challenges in that the dataset for abnormal situations is smaller than that for normal situations. Herein, using datasets such as UBI-Fights, RWF-2000, and UCSD Ped1 and Ped2, anomaly detection was approached as a binary classification problem. Frames extracted from each video with annotation were reconstructed into a limited number of images of 3×3, 4×3, 4×4, 5×3 sizes using the method proposed in this paper, forming an input data structure similar to a light field and patch of vision transformer. The model was constructed by applying a convolutional block attention module that included channel and spatial attention modules to a residual neural network with depths of 10, 18, 34, and 50 in the form of a three-dimensional convolution. The proposed model performed better than existing models in detecting abnormal behavior such as violent acts in videos. For instance, with the undersampled UBI-Fights dataset, our network achieved an accuracy of 0.9933, a loss value of 0.0010, an area under the curve of 0.9973, and an equal error rate of 0.0027. These results may contribute significantly to solve real-world issues such as the detection of violent behavior in artificial intelligence systems using computer vision and real-time video monitoring.

8.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299976

RESUMEN

Insulator defect detection is of great significance to compromise the stability of the power transmission line. The state-of-the-art object detection network, YOLOv5, has been widely used in insulator and defect detection. However, the YOLOv5 network has limitations such as poor detection rate and high computational loads in detecting small insulator defects. To solve these problems, we proposed a light-weight network for insulator and defect detection. In this network, we introduced the Ghost module into the YOLOv5 backbone and neck to reduce the parameters and model size to enhance the performance of unmanned aerial vehicles (UAVs). Besides, we added small object detection anchors and layers for small defect detection. In addition, we optimized the backbone of YOLOv5 by applying convolutional block attention modules (CBAM) to focus on critical information for insulator and defect detection and suppress uncritical information. The experiment result shows the mean average precision (mAP) is set to 0.5, and the mAP is set from 0.5 to 0.95 of our model and can reach 99.4% and 91.7%; the parameters and model size were reduced to 3,807,372 and 8.79 M, which can be easily deployed to embedded devices such as UAVs. Moreover, the speed of detection can reach 10.9 ms/image, which can meet the real-time detection requirement.


Asunto(s)
Diagnóstico por Imagen , Cuello , Columna Vertebral , Dispositivos Aéreos No Tripulados
9.
IEEE Sens J ; 22(18): 17431-17438, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36346097

RESUMEN

(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.

10.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36433403

RESUMEN

Pork is the most widely consumed meat product in the world, and achieving accurate detection of individual pigs is of great significance for intelligent pig breeding and health monitoring. Improved pig detection has important implications for improving pork production and quality, as well as economics. However, most of the current approaches are based on manual labor, resulting in unfeasible performance. In order to improve the efficiency and effectiveness of individual pig detection, this paper describes the development of an attention module enhanced YOLOv3-SC model (YOLOv3-SPP-CBAM. SPP denotes the Spatial Pyramid Pooling module and CBAM indicates the Convolutional Block Attention Module). Specifically, leveraging the attention module, the network will extract much richer feature information, leading the improved performance. Furthermore, by integrating the SPP structured network, multi-scale feature fusion can be achieved, which makes the network more robust. On the constructed dataset of 4019 samples, the experimental results showed that the YOLOv3-SC network achieved 99.24% mAP in identifying individual pigs with a detection time of 16 ms. Compared with the other popular four models, including YOLOv1, YOLOv2, Faster-RCNN, and YOLOv3, the mAP of pig identification was improved by 2.31%, 1.44%, 1.28%, and 0.61%, respectively. The YOLOv3-SC proposed in this paper can achieve accurate individual detection of pigs. Consequently, this novel proposed model can be employed for the rapid detection of individual pigs on farms, and provides new ideas for individual pig detection.


Asunto(s)
Trabajo de Parto , Productos de la Carne , Porcinos , Animales , Embarazo , Femenino , Granjas , Inteligencia , Registros
11.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36298136

RESUMEN

An improved maritime object detection algorithm, SRC-YOLO, based on the YOLOv4-tiny, is proposed in the foggy environment to address the issues of false detection, missed detection, and low detection accuracy in complicated situations. To confirm the model's validity, an ocean dataset containing various concentrations of haze, target angles, and sizes was produced for the research. Firstly, the Single Scale Retinex (SSR) algorithm was applied to preprocess the dataset to reduce the interference of the complex scenes on the ocean. Secondly, in order to increase the model's receptive field, we employed a modified Receptive Field Block (RFB) module in place of the standard convolution in the Neck part of the model. Finally, the Convolutional Block Attention Module (CBAM), which integrates channel and spatial information, was introduced to raise detection performance by expanding the network model's attention to the context information in the feature map and the object location points. The experimental results demonstrate that the improved SRC-YOLO model effectively detects marine targets in foggy scenes by increasing the mean Average Precision (mAP) of detection results from 79.56% to 86.15%.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Tiempo (Meteorología) , Registros , Recolección de Datos
12.
Sensors (Basel) ; 22(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146074

RESUMEN

The synthesis between face sketches and face photos has important application values in law enforcement and digital entertainment. In cases of a lack of paired sketch-photo data, this paper proposes an unsupervised model to solve the problems of missing key facial details and a lack of realism in the synthesized images of existing methods. The model is built on the CycleGAN architecture. To retain more semantic information in the target domain, a multi-scale feature extraction module is inserted before the generator. In addition, the convolutional block attention module is introduced into the generator to enhance the ability of the model to extract important feature information. Via CBAM, the model improves the quality of the converted image and reduces the artifacts caused by image background interference. Next, in order to preserve more identity information in the generated photo, this paper constructs the multi-level cycle consistency loss function. Qualitative experiments on CUFS and CUFSF public datasets show that the facial details and edge structures synthesized by our model are clearer and more realistic. Meanwhile the performance indexes of structural similarity and peak signal-to-noise ratio in quantitative experiments are also significantly improved compared with other methods.


Asunto(s)
Algoritmos , Cara , Relación Señal-Ruido
13.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36081161

RESUMEN

In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.


Asunto(s)
Dispositivos de Protección de la Cabeza , Redes Neurales de la Computación , Algoritmos , Atención , Análisis por Conglomerados
14.
Sensors (Basel) ; 22(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35336400

RESUMEN

Pipeline operational safety is the foundation of the pipeline industry. Inspection and evaluation of defects is an important means of ensuring the safe operation of pipelines. In-line inspection of Magnetic Flux Leakage (MFL) can be used to identify and analyze potential defects. For pipeline MFL identification with inspecting in long distance, there exists the issues of low identification efficiency, misjudgment and leakage judgment. To solve these problems, a pipeline MFL inspection signal identification method based on improved deep residual convolutional neural network and attention module is proposed. A improved deep residual network based on the VGG16 convolution neural network is constructed to automatically learn the features from the MFL image signals and perform the identification of pipeline features and defects. The attention modules are introduced to reduce the influence of noises and compound features on the identification results in the process of in-line inspection. The actual pipeline in-line inspection experimental results show that the proposed method can accurately classify the MFL in-line inspection image signals and effectively reduce the influence of noises on the feature identification results with an average classification accuracy of 97.7%. This method can effectively improve identification accuracy and efficiency of the pipeline MFL in-line inspection.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Atención , Procesamiento de Imagen Asistido por Computador/métodos , Fenómenos Magnéticos
15.
J Imaging Inform Med ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284980

RESUMEN

Conventionally diagnosing septic arthritis relies on detecting the causal pathogens in samples of synovial fluid, synovium, or blood. However, isolating these pathogens through cultures takes several days, thus delaying both diagnosis and treatment. Establishing a quantitative classification model from ultrasound images for rapid septic arthritis diagnosis is mandatory. For the study, a database composed of 342 images of non-septic arthritis and 168 images of septic arthritis produced by grayscale (GS) and power Doppler (PD) ultrasound was constructed. In the proposed architecture of fusion with attention and selective transformation (FAST), both groups of images were combined in a vision transformer (ViT) with the convolutional block attention module, which incorporates spatial, modality, and channel features. Fivefold cross-validation was applied to evaluate the generalized ability. The FAST architecture achieved the accuracy, sensitivity, specificity, and area under the curve (AUC) of 86.33%, 80.66%, 90.25%, and 0.92, respectively. These performances were higher than using conventional ViT (82.14%) and significantly better than using one modality alone (GS 73.88%, PD 72.02%), with the p-value being less than 0.01. Through the integration of multi-modality and the extraction of multiple channel features, the established model provided promising accuracy and AUC in septic arthritis classification. The end-to-end learning of ultrasound features can provide both rapid and objective assessment suggestions for future clinic use.

16.
Heliyon ; 10(4): e26142, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420379

RESUMEN

The pavement is vulnerable to damage from natural disasters, accidents and other human factors, resulting in the formation of cracks. Periodic pavement monitoring can facilitate prompt detection and repair the pavement diseases, thereby minimizing casualties and property losses. Due to the presence of numerous interferences, recognizing highway pavement cracks in complex environments poses a significant challenge. Nevertheless, several computer vision approaches have demonstrated notable success in tackling this issue. We have employed a novel approach for crack recognition utilizing the ResNet34 model with a convolutional block attention module (CBAM), which not only saves parameters and computing power but also ensures seamless integration of the module as a plug-in. Initially, ResNet18, ResNet34, and ResNet50 models were trained by employing transfer learning techniques, with the ResNet34 network being selected as a fundamental model. Subsequently, CBAM was integrated into ResBlock and further training was conducted. Finally, we calculated the precision, average recall on the test set, and the recall of each class. The results demonstrate that by integrating CBAM into the ResNet34 network, the model exhibited improved test accuracy and average recall compared to its previous state. Moreover, our proposed model outperformed all other models in terms of performance. The recall rates for transverse crack, longitudinal crack, map crack, repairing, and pavement marking were 88.8%, 86.8%, 88.5%, 98.3%, and 99.9%, respectively. Our model achieves the highest precision of 92.9% and the highest average recall of 92.5%. However, the effectiveness in detecting mesh cracks was found to be unsatisfactory, despite their significant prevalence. In summary, the proposed model exhibits great potential for crack identification and serves as a crucial foundation for highway maintenance.

17.
Animals (Basel) ; 14(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473092

RESUMEN

Mastitis is one of the most predominant diseases with a negative impact on ranch products worldwide. It reduces milk production, damages milk quality, increases treatment costs, and even leads to the premature elimination of animals. In addition, failure to take effective measures in time will lead to widespread disease. The key to reducing the losses caused by mastitis lies in the early detection of the disease. The application of deep learning with powerful feature extraction capability in the medical field is receiving increasing attention. The main purpose of this study was to establish a deep learning network for buffalo quarter-level mastitis detection based on 3054 ultrasound images of udders from 271 buffaloes. Two data sets were generated with thresholds of somatic cell count (SCC) set as 2 × 105 cells/mL and 4 × 105 cells/mL, respectively. The udders with SCCs less than the threshold value were defined as healthy udders, and otherwise as mastitis-stricken udders. A total of 3054 udder ultrasound images were randomly divided into a training set (70%), a validation set (15%), and a test set (15%). We used the EfficientNet_b3 model with powerful learning capabilities in combination with the convolutional block attention module (CBAM) to train the mastitis detection model. To solve the problem of sample category imbalance, the PolyLoss module was used as the loss function. The training set and validation set were used to develop the mastitis detection model, and the test set was used to evaluate the network's performance. The results showed that, when the SCC threshold was 2 × 105 cells/mL, our established network exhibited an accuracy of 70.02%, a specificity of 77.93%, a sensitivity of 63.11%, and an area under the receiver operating characteristics curve (AUC) of 0.77 on the test set. The classification effect of the model was better when the SCC threshold was 4 × 105 cells/mL than when the SCC threshold was 2 × 105 cells/mL. Therefore, when SCC ≥ 4 × 105 cells/mL was defined as mastitis, our established deep neural network was determined as the most suitable model for farm on-site mastitis detection, and this network model exhibited an accuracy of 75.93%, a specificity of 80.23%, a sensitivity of 70.35%, and AUC 0.83 on the test set. This study established a 1/4 level mastitis detection model which provides a theoretical basis for mastitis detection in buffaloes mostly raised by small farmers lacking mastitis diagnostic conditions in developing countries.

18.
Int J Neural Syst ; 34(8): 2450042, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38818805

RESUMEN

Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Convulsiones , Humanos , Electroencefalografía/métodos , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Atención/fisiología , Procesamiento de Señales Asistido por Computador
19.
Front Artif Intell ; 7: 1414274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978997

RESUMEN

The identification of plant leaf diseases is crucial in precision agriculture, playing a pivotal role in advancing the modernization of agriculture. Timely detection and diagnosis of leaf diseases for preventive measures significantly contribute to enhancing both the quantity and quality of agricultural products, thereby fostering the in-depth development of precision agriculture. However, despite the rapid development of research on plant leaf disease identification, it still faces challenges such as insufficient agricultural datasets and the problem of deep learning-based disease identification models having numerous training parameters and insufficient accuracy. This paper proposes a plant leaf disease identification method based on improved SinGAN and improved ResNet34 to address the aforementioned issues. Firstly, an improved SinGAN called Reconstruction-Based Single Image Generation Network (ReSinGN) is proposed for image enhancement. This network accelerates model training speed by using an autoencoder to replace the GAN in the SinGAN and incorporates a Convolutional Block Attention Module (CBAM) into the autoencoder to more accurately capture important features and structural information in the images. Random pixel Shuffling are introduced in ReSinGN to enable the model to learn richer data representations, further enhancing the quality of generated images. Secondly, an improved ResNet34 is proposed for plant leaf disease identification. This involves adding CBAM modules to the ResNet34 to alleviate the limitations of parameter sharing, replacing the ReLU activation function with LeakyReLU activation function to address the problem of neuron death, and utilizing transfer learning-based training methods to accelerate network training speed. This paper takes tomato leaf diseases as the experimental subject, and the experimental results demonstrate that: (1) ReSinGN generates high-quality images at least 44.6 times faster in training speed compared to SinGAN. (2) The Tenengrad score of images generated by the ReSinGN model is 67.3, which is improved by 30.2 compared to the SinGAN, resulting in clearer images. (3) ReSinGN model with random pixel Shuffling outperforms SinGAN in both image clarity and distortion, achieving the optimal balance between image clarity and distortion. (4) The improved ResNet34 achieved an average recognition accuracy, recognition precision, recognition accuracy (redundant as it's similar to precision), recall, and F1 score of 98.57, 96.57, 98.68, 97.7, and 98.17%, respectively, for tomato leaf disease identification. Compared to the original ResNet34, this represents enhancements of 3.65, 4.66, 0.88, 4.1, and 2.47%, respectively.

20.
Physiol Meas ; 45(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38266299

RESUMEN

Objective.The classification performance of electrocardiogram (ECG) classification algorithms is easily affected by data imbalance, which often leads to poor model prediction performance for a few classes and a consequent decrease in the overall performance of the model.Approach.To address this problem, this paper proposed an ECG data augmentation method based on a generative adversarial network (GAN) that combines bidirectional long short-term memory (Bi-LSTM) networks and convolutional block attention mechanism (CBAM) to improve the overall performance of ECG classification models. In this paper, we used two ECG databases, namely the MIT-BIH arrhythmia (MIT-BIH-AR) database and the Chinese cardiovascular disease database (CCDD). The quality of the ECG signals produced by the generated models was assessed using the percent relative difference, root mean square error, Frechet distance, dynamic time warping (DTW), and Pearson correlation metrics. In addition, we also validated the impact of our proposed data augmentation method on ECG classification performance on MIT-BIH-AR database and CCDD.Main results.On the MIT-BIH-AR database, the overall accuracy of the data-enhanced balanced dataset was improved to 99.46% for 15 types of heartbeat classification task. On the CCDD, which focuses on the detection of ventricular precession (PVC), the overall accuracy of PVC detection improved to 99.15% after performing data enhancement.Significance.The experimental results indicate that the data augmentation method proposed in this paper can further improve the ECG classification performance.


Asunto(s)
Algoritmos , Arritmias Cardíacas , Humanos , Arritmias Cardíacas/diagnóstico , Electrocardiografía/métodos , Ventrículos Cardíacos , Bases de Datos Factuales , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA