Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160.588
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026411

RESUMEN

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/microbiología , Microbioma Gastrointestinal/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Animales , Autoinmunidad , Diabetes Mellitus Tipo 1/inmunología , Homeostasis , Humanos , Tolerancia Inmunológica , Inmunomodulación , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología
2.
Cell ; 187(1): 204-215.e14, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38070508

RESUMEN

Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy. Using 13C-glucose and liquid chromatography-mass spectrometry (LC-MS), we profiled the metabolism of fetal brains, hearts, livers, and placentas harvested from pregnant dams between embryonic days (E)10.5 and 18.5. Our analysis revealed metabolic features specific to a hyperglycemic environment and signatures that may denote developmental transitions during euglycemic development. We observed sorbitol accumulation in fetal tissues and altered neurotransmitter levels in fetal brains isolated from hyperglycemic dams. Tracing 13C-glucose revealed disparate fetal nutrient sourcing depending on maternal glycemic states. Regardless of glycemic state, histidine-derived metabolites accumulated in late-stage fetal tissues. Our rich dataset presents a comprehensive overview of in vivo fetal tissue metabolism and alterations due to maternal hyperglycemia.


Asunto(s)
Diabetes Mellitus , Diabetes Gestacional , Feto , Animales , Femenino , Ratones , Embarazo , Diabetes Mellitus/metabolismo , Feto/metabolismo , Glucosa/metabolismo , Placenta/metabolismo , Diabetes Gestacional/metabolismo
3.
Cell ; 187(3): 764-781.e14, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306985

RESUMEN

Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.


Asunto(s)
Metabolómica , Embarazo , Animales , Femenino , Humanos , Embarazo/metabolismo , Corticosterona/metabolismo , Metaboloma/fisiología , Placenta/metabolismo , Preeclampsia , Primates/metabolismo
4.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653240

RESUMEN

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Aminoácidos de Cadena Ramificada , Resistencia a la Insulina , Mitocondrias , Nitrógeno , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Nitrógeno/metabolismo , Mitocondrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Ratones Endogámicos C57BL , Estrés Oxidativo , Insulina/metabolismo , Dieta Alta en Grasa , Adipocitos Marrones/metabolismo , Transducción de Señal
5.
Cell ; 186(26): 5812-5825.e21, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38056462

RESUMEN

Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.


Asunto(s)
Insulina , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Transducción de Señal , Animales , Humanos , Ratones , Acilcoenzima A/metabolismo , Tejido Adiposo/metabolismo , Resistencia a la Insulina , Óxido Nítrico/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo
6.
Cell ; 186(26): 5798-5811.e26, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134875

RESUMEN

Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.


Asunto(s)
Amiloide , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Amiloide/química , Microscopía por Crioelectrón , Polipéptido Amiloide de los Islotes Pancreáticos/química , Proteínas Amiloidogénicas
7.
Cell ; 185(3): 419-446, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120662

RESUMEN

Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.


Asunto(s)
Adaptación Fisiológica , Tejido Adiposo/fisiología , Enfermedad , Salud , Adipocitos Blancos/metabolismo , Animales , Humanos , Termogénesis
8.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35931082

RESUMEN

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiología , Ratones , Transgenes
9.
Cell ; 184(3): 840-843, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545037

RESUMEN

We have recently identified a novel lymphocyte that is a dual expresser (DE) of TCRαß and BCR. DEs in T1D patients are predominated by a public BCR clonotype (clone-x) that encodes a potent autoantigen that cross-activates insulin-reactive T cells. Betts and colleagues were able to detect DEs but alleged to not detect high DE frequency, clone-x, or similar clones in T1D patients. Unfortunately, the authors did not follow our methods and when they did, their flow cytometric data at two sites were conflicting. Moreover, contrary to their claim, we identified clones similar to clone-x in their data along with clones bearing the core motif (DTAMVYYFDYW). Additionally, their report of no increased usage of clone-x VH/DH genes by bulk B cells confirms rather than challenges our results. Finally, the authors failed to provide data verifying purity of their sorted DEs, making it difficult to draw reliable conclusion of their repertoire analysis. This Matters Arising Response paper addresses the Japp et al. (2021) Matters Arising paper, published concurrently in Cell.


Asunto(s)
Diabetes Mellitus Tipo 1 , Linfocitos B , Células Clonales , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos T
10.
Cell ; 184(3): 827-839.e14, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545036

RESUMEN

Ahmed and colleagues recently described a novel hybrid lymphocyte expressing both a B and T cell receptor, termed double expresser (DE) cells. DE cells in blood of type 1 diabetes (T1D) subjects were present at increased numbers and enriched for a public B cell clonotype. Here, we attempted to reproduce these findings. While we could identify DE cells by flow cytometry, we found no association between DE cell frequency and T1D status. We were unable to identify the reported public B cell clone, or any similar clone, in bulk B cells or sorted DE cells from T1D subjects or controls. We also did not observe increased usage of the public clone VH or DH genes in B cells or in sorted DE cells. Taken together, our findings suggest that DE cells and their alleged public clonotype are not enriched in T1D. This Matters Arising paper is in response to Ahmed et al. (2019), published in Cell. See also the response by Ahmed et al. (2021), published in this issue.


Asunto(s)
Diabetes Mellitus Tipo 1 , Linfocitos B , Células Clonales , Diabetes Mellitus Tipo 1/genética , Citometría de Flujo , Humanos , Receptores de Antígenos de Linfocitos T
11.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32615086

RESUMEN

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo Beige/metabolismo , Metabolismo Energético/genética , Quinasa 1 de Adhesión Focal/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo , Tetraspanina 28/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Beige/citología , Tejido Adiposo Beige/crecimiento & desarrollo , Tejido Adiposo Blanco/metabolismo , Adulto , Animales , Ataxina-1/metabolismo , Femenino , Fibronectinas/farmacología , Quinasa 1 de Adhesión Focal/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Resistencia a la Insulina/genética , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual , Células Madre/citología , Tetraspanina 28/genética
12.
Cell ; 179(6): 1289-1305.e21, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761534

RESUMEN

Adult mesenchymal stem cells, including preadipocytes, possess a cellular sensory organelle called the primary cilium. Ciliated preadipocytes abundantly populate perivascular compartments in fat and are activated by a high-fat diet. Here, we sought to understand whether preadipocytes use their cilia to sense and respond to external cues to remodel white adipose tissue. Abolishing preadipocyte cilia in mice severely impairs white adipose tissue expansion. We discover that TULP3-dependent ciliary localization of the omega-3 fatty acid receptor FFAR4/GPR120 promotes adipogenesis. FFAR4 agonists and ω-3 fatty acids, but not saturated fatty acids, trigger mitosis and adipogenesis by rapidly activating cAMP production inside cilia. Ciliary cAMP activates EPAC signaling, CTCF-dependent chromatin remodeling, and transcriptional activation of PPARγ and CEBPα to initiate adipogenesis. We propose that dietary ω-3 fatty acids selectively drive expansion of adipocyte numbers to produce new fat cells and store saturated fatty acids, enabling homeostasis of healthy fat tissue.


Asunto(s)
Adipogénesis , Cilios/metabolismo , Ácidos Grasos Omega-3/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Cilios/efectos de los fármacos , AMP Cíclico/metabolismo , Ácidos Docosahexaenoicos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , PPAR gamma/metabolismo
13.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474368

RESUMEN

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Agmatina/metabolismo , Animales , Caenorhabditis elegans/microbiología , Proteína Receptora de AMP Cíclico , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Longevidad/efectos de los fármacos , Metformina/farmacología , Nutrientes/metabolismo
14.
Cell ; 177(6): 1583-1599.e16, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150624

RESUMEN

T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Adolescente , Adulto , Autoantígenos/inmunología , Niño , Preescolar , Diabetes Mellitus Tipo 1/metabolismo , Epítopos/inmunología , Femenino , Células HEK293 , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/ultraestructura , Humanos , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Péptidos , Unión Proteica/inmunología
15.
Immunity ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754432

RESUMEN

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.

16.
Cell ; 175(3): 605-614, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340032

RESUMEN

Modern nutrition is often characterized by the excessive intake of different types of carbohydrates ranging from digestible polysaccharides to refined sugars that collectively mediate noxious effects on human health, a phenomenon that we refer to as "carbotoxicity." Epidemiological and experimental evidence combined with clinical intervention trials underscore the negative impact of excessive carbohydrate uptake, as well as the beneficial effects of reducing carbs in the diet. We discuss the molecular, cellular, and neuroendocrine mechanisms that link exaggerated carbohydrate intake to disease and accelerated aging as we outline dietary and pharmacologic strategies to combat carbotoxicity.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Carbohidratos de la Dieta/efectos adversos , Animales , Metabolismo de los Hidratos de Carbono , Cardiotoxicidad , Humanos
17.
Cell ; 173(1): 62-73.e9, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29526462

RESUMEN

Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to ß cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to ß cell failure.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/toxicidad , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Modelos Biológicos , Mutagénesis , Agregado de Proteínas/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
18.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754817

RESUMEN

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Factores de Transcripción/metabolismo , Vitamina D/farmacología , Animales , Calcitriol/análogos & derivados , Calcitriol/farmacología , Ensamble y Desensamble de Cromatina , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
19.
Cell ; 173(1): 11-19, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570991

RESUMEN

The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic ß-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Biología Computacional , Descubrimiento de Drogas , Humanos , Células Secretoras de Insulina/citología , Proteínas/química , Proteínas/metabolismo
20.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37557168

RESUMEN

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Asunto(s)
Autoinmunidad , Páncreas , Ratones , Animales , Páncreas/patología , Hígado , Linfocitos T , Ganglios Linfáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA