Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(9): e202303708, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38088216

RESUMEN

The study on structure-property relationship has been a significant focus in the field of organic molecular luminescence. In the present work, three chiral binaphthyl-based triphenylethylene (HTPE) derivatives were prepared through condensation reactions. Despite their similar structures, these compounds exhibited distinct luminescent properties. Diphenylmethane-derived HTPE displayed dual-state emissions, characterized by dual-wavelength emissions which were insensitive to the polarity of solvents. The dual emissions in solution state could be attributed to the different locally excited (LE) excitons. However, upon aggregation, two stable conformers were generated, probably leading to different emission peaks. In contrast, dibenzocycloheptadiene-derived HTPE aggregates showed only a single emission peak. Surprisingly, fluorene-derived HTPE exhibited obvious luminescence in neither solution nor aggregate states due to inherent π-π interactions. These conclusions were substantiated by X-ray analysis, spectroscopic analysis, and theory calculations. Application studies demonstrated that fluorescence on/off switches could be achieved through exposure to acetone. More importantly, trace amounts of acetone could be detected using luminescent materials in both organic and aqueous phases with a detection limit of 0.08 %. Thus, this work not only presents a strategy for designing chiral triphenylethylene fluorophores but also provides valuable information for dual wavelength emissions resulting from two stable conformations.

2.
Luminescence ; 39(2): e4692, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383694

RESUMEN

An optical thermometry strategy based on Mn2+ -doped dual-wavelength emission phosphor has been reported. Samples with different doping content were synthesized through a high-temperature solid-phase method under an air atmosphere. The electronic structure of Li4 Zn(PO4 )2 was calculated using density functional theory, revealing it to be a direct band gap material with an energy gap of 4.708 eV. Moreover, the emitting bands of Mn2+ at 530 and 640 nm can be simultaneously observed when using 417 nm as the exciting wavelength. This is due to the occupation of Mn2+ at the Zn2+ site and the interstitial site. Further analysis was conducted on the temperature-dependent emission characteristics of the sample in the range 293-483 K. Mn2+ has different responses to temperature at different doping sites in Li4 Zn(PO4 )2 . Based on the calculations using the fluorescence intensity ratio technique, the maximum relative sensitivity at a temperature of 483 K was determined to be 1.69% K-1 , while the absolute sensitivity was found to be 0.12% K-1 . The results showed that the Li4 Zn(PO4 )2 :Mn2+ phosphor has potential application in optical thermometry.


Asunto(s)
Termometría , Temperatura , Iones , Litio , Zinc
3.
ACS Appl Mater Interfaces ; 7(21): 11141-5, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25962342

RESUMEN

A near-infrared fluorescent dye (aza-bodipy or azaBDPBA) functionalized with boronic acid groups was synthesized for the preparation of optodes to measure glucose in 40-fold diluted whole blood. Boronic acid groups as an electron deficient group on aza-bodipy was reacted with hydrogen peroxide into an electron-rich phenolic group leading to the red-shift of emission wavelength from 682 to 724 nm. The emission in near-infrared region offered a low level of background interference from whole blood. Also, the dual-wavelength emission guaranteed our probe to measure glucose in whole blood accurately after the conversion of glucose into hydrogen peroxide using glucose oxidase. The measuring range of glucose from 0.2 to 200 mM in the buffer was achieved with high selectivity. To facilitate the blood test, the probe was immobilized into thin hydrophobic polymer films to prepare the disposal glucose optode, which could detect glucose in the solution from 60 µM to 100 mM. The concentration of glucose in 40-fold diluted whole blood was determined using our optode and the reference method, respectively. The consistence in the concentration obtained from these two assays revealed that our azaBDPBA-based optodes were promising for the clinic assay of glucose in the whole blood.


Asunto(s)
Técnicas Biosensibles/instrumentación , Glucemia/análisis , Compuestos de Boro/química , Ácidos Borónicos/química , Glucosa Oxidasa/química , Espectrometría de Fluorescencia/instrumentación , Equipos Desechables , Diseño de Equipo , Análisis de Falla de Equipo , Colorantes Fluorescentes/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA