Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.618
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 101(4): 1873-1979, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33829868

RESUMEN

A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Trastornos de Estrés por Calor/fisiopatología , Respuesta al Choque Térmico , Agua/metabolismo , Aclimatación/fisiología , Animales , Calor , Humanos , Desempeño Psicomotor , Sudoración , Pérdida Insensible de Agua
2.
Proc Natl Acad Sci U S A ; 121(16): e2322684121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588426

RESUMEN

Many composites consist of matrices of elastomers and nanoparticles of stiff materials. Such composites often have superior properties and are widely used. Embedding elastomers with nanoparticles commonly necessitates intense shear, using machines like extruders and roll millers, which cut polymer chains and degrade properties. Here, we prepare a rubber-glass nanocomposite by using two aqueous emulsions. Each emulsion is separately prepared with a single species of polymer chains. Each polymer chain is copolymerized with a small amount of silane coupling agent. Upon mixing the two emulsions, as water evaporates, the glassy particles retain the shape, and the rubbery particles change shape to form a continuous matrix. Subsequently, the silane coupling agent condensates, which cross-links the rubbery chains and interlinks the rubbery chains to the glassy particles. The cross-links and interlinks stabilize the nanostructure and lead to superior properties. The nanocomposite simultaneously achieves high modulus (~30 MPa), high toughness (~100 kJ m-2), and high fatigue threshold (~1,000 J m-2). The method of mixed emulsion is environmentally friendly and compatible with various open-air manufacturing processes, such as coat, cast, spray, print, and brush. Additionally, the silane coupling agent can interlink the nanocomposite to other materials. The method of mixed emulsion can be used to fabricate objects of complex shapes, fine features, and prescribed spatial variations of compositions.

3.
Proc Natl Acad Sci U S A ; 121(34): e2401874121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133855

RESUMEN

The human neck is a unique mechanical structure, highly flexible but fatigue prone. The rising prevalence of neck pain and chronic injuries has been attributed to increasing exposure to fatigue loading in activities such as prolonged sedentary work and overuse of electronic devices. However, a causal relationship between fatigue and musculoskeletal mechanical changes remains elusive. This work aimed to establish this relationship through a unique experiment design, inspired by a cantilever beam mechanical model of the neck, and an orchestrated deployment of advanced motion-force measurement technologies including dynamic stereo-radiographic imaging. As a group of 24 subjects performed sustained-till-exhaustion neck exertions in varied positions-neutral, extended, and flexed, their cervical spine musculoskeletal responses were measured. Data verified the occurrence of fatigue and revealed fatigue-induced neck deflection which increased cervical lordosis or kyphosis by 4-5° to 11°, depending on the neck position. This finding and its interpretations render a renewed understanding of muscle fatigue from a more unified motor control perspective as well as profound implications on neck pain and injury prevention.


Asunto(s)
Fatiga Muscular , Dolor de Cuello , Cuello , Humanos , Masculino , Adulto , Femenino , Fatiga Muscular/fisiología , Dolor de Cuello/fisiopatología , Dolor de Cuello/etiología , Vértebras Cervicales/diagnóstico por imagen , Fenómenos Biomecánicos , Músculos del Cuello/fisiología , Rango del Movimiento Articular , Adulto Joven , Lordosis/fisiopatología
4.
Proc Natl Acad Sci U S A ; 120(34): e2302738120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579159

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by various disabling symptoms including exercise intolerance and is diagnosed in the absence of a specific cause, making its clinical management challenging. A better understanding of the molecular mechanism underlying this apparent bioenergetic deficiency state may reveal insights for developing targeted treatment strategies. We report that overexpression of Wiskott-Aldrich Syndrome Protein Family Member 3 (WASF3), here identified in a 38-y-old woman suffering from long-standing fatigue and exercise intolerance, can disrupt mitochondrial respiratory supercomplex formation and is associated with endoplasmic reticulum (ER) stress. Increased expression of WASF3 in transgenic mice markedly decreased their treadmill running capacity with concomitantly impaired respiratory supercomplex assembly and reduced complex IV levels in skeletal muscle mitochondria. WASF3 induction by ER stress using endotoxin, well known to be associated with fatigue in humans, also decreased skeletal muscle complex IV levels in mice, while decreasing WASF3 levels by pharmacologic inhibition of ER stress improved mitochondrial function in the cells of the patient with chronic fatigue. Expanding on our findings, skeletal muscle biopsy samples obtained from a cohort of patients with ME/CFS showed increased WASF3 protein levels and aberrant ER stress activation. In addition to revealing a potential mechanism for the bioenergetic deficiency in ME/CFS, our study may also provide insights into other disorders associated with fatigue such as rheumatic diseases and long COVID.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Animales , Femenino , Humanos , Ratones , COVID-19/metabolismo , Síndrome de Fatiga Crónica/diagnóstico , Mitocondrias/metabolismo , Síndrome Post Agudo de COVID-19 , Respiración , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Ratones Transgénicos
5.
Proc Natl Acad Sci U S A ; 120(37): e2304722120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669378

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one of the epidemic-prone diseases prioritized by the World Health Organisation as public health emergency with an urgent need for accelerated research. The trajectory of host response against CCHFV is multifarious and remains unknown. Here, we reported the temporal spectrum of pathogenesis following the CCHFV infection using genome-wide blood transcriptomics analysis followed by advanced systems biology analysis, temporal immune-pathogenic alterations, and context-specific progressive and postinfection genome-scale metabolic models (GSMM) on samples collected during the acute (T0), early convalescent (T1), and convalescent-phase (T2). The interplay between the retinoic acid-inducible gene-I-like/nucleotide-binding oligomerization domain-like receptor and tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic acid cycle during CCHFV infection, compared to the noninfected healthy control and between the severity groups, indicated an increased energy demand and cellular stress. The upregulation of glycolysis and pyruvate metabolism potentiated energy generation through alternative pathways associated with the severity of the infection. The downregulation of metabolic processes at the convalescent phase identified by blood cell transcriptomics and single-cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ monocytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery due to hyperactivity during the acute phase leading to post-viral fatigue syndrome.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Metaboloma
6.
Proc Natl Acad Sci U S A ; 120(6): e2217781120, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716369

RESUMEN

Soft materials fail by crack propagation under external loads. While fracture toughness of a soft material can be enhanced by orders of magnitude, its fatigue threshold remains insusceptible. In this work, we demonstrate a crack tip softening (CTS) concept to simultaneously improve the toughness and threshold of a single polymeric network. Polyacrylamide hydrogels have been selected as a model material. The polymer network is cured by two kinds of crosslinkers: a normal crosslinker and a light-degradable crosslinker. We characterize the pristine sample and light-treated sample by shear modulus, fracture toughness, fatigue threshold, and fractocohesive length. Notably, we apply light at the crack tip of a sample so that the light-sensitive crosslinkers degrade, resulting in a CTS sample with a softer and elastic crack tip. The pristine sample has a fracture toughness of 748.3 ± 15.19 J/m2 and a fatigue threshold of 9.3 J/m2. By comparison, the CTS sample has a fracture toughness of 2,774.6 ± 127.14 J/m2 and a fatigue threshold of 33.8 J/m2. Both fracture toughness and fatigue threshold have been enhanced by about four times. We attribute this simultaneous enhancement to stress de-concentration and elastic shielding at the crack tip. Different from the "fiber/matrix composite" concept and the "crystallization at the crack tip" concept, the CTS concept in the present work provides another option to simultaneously enhance the toughness and threshold, which improves the reliability of soft devices during applications.

7.
Proc Natl Acad Sci U S A ; 120(9): e2219394120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802437

RESUMEN

Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits can lead to compensatory lapses in vocal technique and an increased risk of vocal fold injury. Quantifying and recording vocal dose to inform individuals about potential overuse is an important step toward mitigating vocal fatigue. Previous work establishes vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but with bulky, wired devices that are not amenable to continuous use during natural daily activities; these previously reported systems also provide limited mechanisms for real-time user feedback. This study introduces a soft, wireless, skin-conformal technology that gently mounts on the upper chest to capture vibratory responses associated with vocalization in a manner that is immune to ambient noises. Pairing with a separate, wirelessly linked device supports haptic feedback to the user based on quantitative thresholds in vocal usage. A machine learning-based approach enables precise vocal dosimetry from the recorded data, to support personalized, real-time quantitation and feedback. These systems have strong potential to guide healthy behaviors in vocal use.


Asunto(s)
Canto , Trastornos de la Voz , Voz , Humanos , Retroalimentación , Trastornos de la Voz/etiología , Voz/fisiología , Pliegues Vocales/fisiología
8.
J Neurosci ; 44(35)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39060176

RESUMEN

Infection causes reduced activity, anorexia, and sleep, which are components of the phylogenetically conserved but poorly understood sickness behavior. We developed a Caenorhabditis elegans model to study quiescence during chronic infection, using infection with the Orsay virus. The Orsay virus infects intestinal cells yet strongly affects behavior, indicating gut-to-nervous system communication. Infection quiescence has the sleep properties of reduced responsiveness and rapid reversibility. Both the ALA and RIS neurons regulate virus-induced quiescence though ALA plays a more prominent role. Quiescence-defective animals have decreased survival when infected, indicating a benefit of quiescence during chronic infectious disease. The survival benefit of quiescence is not explained by a difference in viral load, indicating that it improves resilience rather than resistance to infection. Orsay infection is associated with a decrease in ATP levels, and this decrease is more severe in quiescence-defective animals. We propose that quiescence preserves energetic resources by reducing energy expenditures and/or by increasing extraction of energy from nutrients. This model presents an opportunity to explore the role of sleep and fatigue in chronic infectious illness.


Asunto(s)
Caenorhabditis elegans , Animales , Neuronas/virología , Neuronas/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Animales Modificados Genéticamente , Adenosina Trifosfato/metabolismo , Infecciones por Rhabdoviridae/virología , Sueño/fisiología , Modelos Animales de Enfermedad
9.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38811165

RESUMEN

The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.


Asunto(s)
Ritmo alfa , Sensibilidad de Contraste , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Masculino , Adulto , Ritmo alfa/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Sensibilidad de Contraste/fisiología , Adulto Joven , Método Doble Ciego , Electroencefalografía/métodos , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Fatiga Mental/fisiopatología
10.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771634

RESUMEN

Preimplantation embryos often consist of a combination of euploid and aneuploid cells, suggesting that safeguards preventing the generation and propagation of aneuploid cells in somatic cells might be deficient in embryos. In somatic cells, a mitotic timer mechanism has been described, in which even a small increase in the duration of M phase can cause a cell cycle arrest in the subsequent interphase, preventing further propagation of cells that have undergone a potentially hazardously long M phase. Here, we report that cell divisions in the mouse embryo and embryonic development continue even after a mitotic prolongation of several hours. However, similar M-phase extensions caused cohesion fatigue, resulting in prematurely separated sister chromatids and the production of micronuclei. Only extreme prolongation of M phase caused a subsequent interphase arrest, through a mechanism involving DNA damage. Our data suggest that the simultaneous absence of a robust mitotic timer and susceptibility of the embryo to cohesion fatigue could contribute to chromosome instability in mammalian embryos. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Aneuploidia , Blastocisto , Animales , Blastocisto/metabolismo , Inestabilidad Cromosómica , Desarrollo Embrionario/genética , Fatiga/metabolismo , Femenino , Humanos , Mamíferos , Ratones , Embarazo
11.
FASEB J ; 38(2): e23373, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38217376

RESUMEN

Fatigue is a common phenomenon closely related to physical discomfort and numerous diseases, which is severely threatening the life quality and health of people. However, the exact mechanisms underlying fatigue are not fully characterized. Herein, we demonstrate that oxaloacetic acid (OAA), a crucial tricarboxylic acid cycle intermediate, modulates the muscle fatigue. The results showed that serum OAA level was positively correlated with fatigue state of mice. OAA-treated induced muscle fatigue impaired the exercise performance of mice. Mechanistically, OAA increased the c-Jun N-terminal kinase (JNK) phosphorylation and uncoupling protein 2 (UCP2) levels in skeletal muscle, which led to decreased energy substrate and enhanced glycolysis. On the other hand, OAA boosted muscle mitochondrial oxidative phosphorylation uncoupled with energy production. In addition, either UCP2 knockout or JNK inhibition totally reversed the effects of OAA on skeletal muscle. Therein, JNK mediated UCP2 activation with OAA-treated. Our studies reveal a novel role of OAA in skeletal muscle metabolism, which would shed light on the mechanism of muscle fatigue and weakness.


Asunto(s)
Mitocondrias , Ácido Oxaloacético , Humanos , Ratones , Animales , Ácido Oxaloacético/metabolismo , Ácido Oxaloacético/farmacología , Mitocondrias/metabolismo , Fosforilación Oxidativa , Ciclo del Ácido Cítrico , Músculo Esquelético/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 3/metabolismo , Metabolismo Energético
12.
Brain ; 147(10): 3352-3357, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38941444

RESUMEN

The relative inability to produce effortful movements is the most specific motor sign of Parkinson's disease, which is primarily characterized by loss of dopaminergic terminals in the putamen. The motor motivation hypothesis suggests that this motor deficit may not reflect a deficiency in motor control per se, but a deficiency in cost-benefit considerations for motor effort. For the first time, we investigated the quantitative effect of dopamine depletion on the motivation of motor effort in Parkinson's disease. A total of 21 early-stage, unmedicated patients with Parkinson's disease and 26 healthy controls were included. An incentivized force task was used to capture the amount of effort participants were willing to invest for different monetary incentive levels and dopamine transporter depletion in the bilateral putamen was assessed. Our results demonstrate that patients with Parkinson's disease applied significantly less grip force than healthy controls, especially for low incentive levels. Congruously, decrease of motor effort with greater loss of putaminal dopaminergic terminals was most pronounced for low incentive levels. This signifies that putaminal dopamine is most critical to motor effort when the trade-off with the benefit is poor. Taken together, we provide direct evidence that the reduction of effortful movements in Parkinson's disease depends on motivation and that this effect is associated with putaminal dopaminergic degeneration.


Asunto(s)
Dopamina , Motivación , Movimiento , Enfermedad de Parkinson , Putamen , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/psicología , Masculino , Femenino , Dopamina/metabolismo , Persona de Mediana Edad , Putamen/metabolismo , Anciano , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Fuerza de la Mano/fisiología , Tomografía Computarizada de Emisión de Fotón Único
13.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991273

RESUMEN

Prolonged exposure to others' suffering can lead to empathy fatigue, especially when individuals struggle to effectively regulate their empathic capacity. Shifting active attention away from emotional components toward cognitive components of others' suffering is an effective strategy for mitigating empathy fatigue. This research investigated how top-down attentional manipulation modulates empathy fatigue in both auditory (Study 1) and visual (Study 2) modalities. Participants completed two tasks in both studies: (i) the attention to cognitive empathy task (A-C task) and (ii) the attention to emotional empathy task (A-E task). Each task included three blocks (Time Block 1, Time Block 2, and Time Block 3) designed to induce empathy fatigue. Study 1 revealed that the A-C task reduced empathy fatigue and N1 amplitudes than the A-E task in Time Block 3, indicating that attention to cognitive empathy might decrease auditory empathy fatigue. Study 2 indicates that the A-C task caused a longer N2 latency than the A-E task, signifying a decelerated emotional empathic response when attention was on cognitive empathy in the visual modality. Overall, prioritizing cognitive empathy seems to conserve mental resources and reduce empathy fatigue. This research documented the relationship between top-down attention and empathy fatigue and the possible neural mechanism.


Asunto(s)
Emociones , Empatía , Humanos , Emociones/fisiología
14.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489786

RESUMEN

While it is well known that mental fatigue impairs fine motor performance, the investigation into its neural basis remains scant. Here, we investigate the impact of mental fatigue on fine motor performance and explore its underlying neural network connectivity mechanisms. A total of 24 healthy male university students were recruited and randomly divided into two groups: a mental fatigue group (MF) and a control group (Control). Both groups completed 50 dart throws, while electroencephalography (EEG) data were collected. Following the Stroop intervention, participants in the MF group exhibited a decrease in Stroop task accuracy and throwing performance, and an increase in reaction time along with VAS and NASA scores. The EEG data during dart-throwing revealed that the network connectivity strength of theta oscillations in the frontal and left central regions was significantly higher in the MF group compared with the Control group, while the network connectivity strength of alpha oscillations in the left parietal region was significantly enhanced. The interregional connectivity within the theta and alpha rhythm bands, particularly in the frontal-central-parietal network connections, also showed a significant increase in the MF group. Mental fatigue impairs dart throwing performance and is accompanied by increased connectivity in alpha and theta.


Asunto(s)
Electroencefalografía , Lóbulo Parietal , Humanos , Masculino , Tiempo de Reacción , Ritmo alfa , Fatiga Mental
15.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212287

RESUMEN

This study aimed to explore the topographic features of thalamic subregions, functional connectomes and hierarchical organizations between thalamus and cortex in poststroke fatigue patients. We consecutively recruited 121 acute ischemic stroke patients (mean age: 59 years) and 46 healthy controls matched for age, sex, and educational level. The mean age was 59 years (range 19-80) and 38% of acute stroke patients were females. Resting-state functional and structural magnetic resonance imaging were conducted on all participants. The fatigue symptoms were measured using the Fatigue Severity Scale. The thalamic functional subdivisions corresponding to the canonical functional network were defined using the winner-take-all parcellation method. Thalamic functional gradients were derived using the diffusion embedding analysis. The results suggested abnormal functional connectivity of thalamic subregions primarily located in the temporal lobe, posterior cingulate gyrus, parietal lobe, and precuneus. The thalamus showed a gradual increase from the medial to the lateral in all groups, but the right thalamus shifted more laterally in poststroke fatigue patients than in non- poststroke fatigue patients. Poststroke fatigue patients also had higher gradient scores in the somatomotor network and the right medial prefrontal and premotor thalamic regions, but lower values in the right lateral prefrontal thalamus. The findings suggested that poststroke fatigue patients had altered functional connectivity and thalamocortical hierarchical organizations, providing new insights into the neural mechanisms of the thalamus.


Asunto(s)
Conectoma , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Conectoma/métodos , Accidente Cerebrovascular Isquémico/patología , Tálamo/patología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Fatiga/diagnóstico por imagen , Fatiga/etiología
16.
Proc Natl Acad Sci U S A ; 119(49): e2210819119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454755

RESUMEN

Hemolysis usually happens instantly when red blood cells (RBCs) rupture under a high shear stress. However, it is also found to happen gradually in the extracorporeal membrane oxygenation (ECMO) under low but periodic squeezes. In particular, the gradual hemolysis is accompanied by a progressive change in morphology of RBCs. In this work, the gradual hemolysis is studied in a microfluidic device with arrays of narrow gaps the same as the constructions in ECMO. RBCs are seen to deform periodically when they flow through the narrow gaps, which causes the release of adenosine-triphosphate (ATP) from RBCs. The reduced ATP level in the cells leads to the fatigue of RBCs with the progressive changes in morphology and the gradual loss of deformability. An empirical model for the fatigue of RBCs is established under the periodic squeezes with controlled deformation, and it reveals a different way of the hemolysis that is dominated by the squeeze frequency. This finding brings a new insight into the mechanism of hemolysis, and it helps to improve the design of circulatory support devices.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Hemólisis , Humanos , Eritrocitos , Fatiga , Adenosina Trifosfato
17.
Proc Natl Acad Sci U S A ; 119(48): e2213313119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36417445

RESUMEN

Hong Kong has implemented stringent public health and social measures (PHSMs) to curb each of the four COVID-19 epidemic waves since January 2020. The third wave between July and September 2020 was brought under control within 2 m, while the fourth wave starting from the end of October 2020 has taken longer to bring under control and lasted at least 5 mo. Here, we report the pandemic fatigue as one of the potential reasons for the reduced impact of PHSMs on transmission in the fourth wave. We contacted either 500 or 1,000 local residents through weekly random-digit dialing of landlines and mobile telephones from May 2020 to February 2021. We analyze the epidemiological impact of pandemic fatigue by using the large and detailed cross-sectional telephone surveys to quantify risk perception and self-reported protective behaviors and mathematical models to incorporate population protective behaviors. Our retrospective prediction suggests that an increase of 100 daily new reported cases would lead to 6.60% (95% CI: 4.03, 9.17) more people worrying about being infected, increase 3.77% (95% CI: 2.46, 5.09) more people to avoid social gatherings, and reduce the weekly mean reproduction number by 0.32 (95% CI: 0.20, 0.44). Accordingly, the fourth wave would have been 14% (95% CI%: -53%, 81%) smaller if not for pandemic fatigue. This indicates the important role of mitigating pandemic fatigue in maintaining population protective behaviors for controlling COVID-19.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Gripe Humana/prevención & control , Hong Kong/epidemiología , Estudios Transversales , Estudios Retrospectivos , Fatiga/epidemiología , Fatiga/prevención & control
18.
Proc Natl Acad Sci U S A ; 119(48): e2201266119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36413499

RESUMEN

Health authorities have highlighted "pandemic fatigue" as a psychological consequence of the COVID-19 pandemic and warned that "fatigue" could demotivate compliance with health-related policies and mandates. Yet, fatigue from following the policies of authorities may have consequences far beyond the health domain. Theories from the social sciences have raised that real and perceived costs of policies can also drive sentiments of discontent with the entire political establishment. Integrating theories from the health and social sciences, we ask how pandemic fatigue (i.e., perceived inability to "keep up" with restrictions) developed over the pandemic and whether it fueled political discontent. Utilizing longitudinal and panel surveys collected from September 2020 to July 2021 in eight Western countries (N = 49,116), we analyze: 1) fatigue over time at the country level, 2) associations between pandemic fatigue and discontent, and 3) the effect of pandemic fatigue on political discontent using panel data. Pandemic fatigue significantly increased with time and the severity of interventions but also decreased with COVID-19 deaths. When triggered, fatigue elicited a broad range of discontent, including protest support and conspiratorial thinking. The results demonstrate the significant societal impact of the pandemic beyond the domain of health and raise concerns about the stability of democratic societies, which were already strained by strife prior to the pandemic.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , Política de Salud , Ciencias Sociales , Costos y Análisis de Costo
19.
Proc Natl Acad Sci U S A ; 119(28): e2123497119, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787051

RESUMEN

Spatial variations in fiber alignment (and, therefore, in mechanical anisotropy) play a central role in the excellent toughness and fatigue characteristics of many biological materials. In this work, we examine the effect of fiber alignment in soft composites, including both "in-plane" and "out-of-plane" fiber arrangements. We take inspiration from the spatial variations of fiber alignment found in the aorta to three-dimensionally (3D) print soft, tough silicone composites with an excellent combination of stiffness, toughness, and fatigue threshold, regardless of the direction of loading. These aorta-inspired composites exhibit mechanical properties comparable to skin, with excellent combinations of stiffness and toughness not previously observed in synthetic soft materials.

20.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35210359

RESUMEN

Deformation-induced martensitic transformation (DIMT) has been used for designing high-performance alloys to prevent structural failure under static loads. Its effectiveness against fatigue, however, is unclear. This limits the application of DIMT for parts that are exposed to variable loads, although such scenarios are the rule and not the exception for structural failure. Here we reveal the dual role of DIMT in fatigue crack growth through in situ observations. Two antagonistic fatigue mechanisms mediated by DIMT are identified, namely, transformation-mediated crack arresting, which prevents crack growth, and transformation-mediated crack coalescence, which promotes crack growth. Both mechanisms are due to the hardness and brittleness of martensite as a transformation product, rather than to the actual transformation process itself. In fatigue crack growth, the prevalence of one mechanism over the other critically depends on the crack size and the mechanical stability of the parent austenite phase. Elucidating the two mechanisms and their interplay allows for the microstructure design and safe use of metastable alloys that experience fatigue loads. The findings also generally reveal how metastable alloy microstructures must be designed for materials to be fatigue-resistant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA