Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small ; 20(4): e2304119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37759420

RESUMEN

Although antibiotic is still the main choice for antibacteria both in hospital and community, phototherapy has become a possibly one of the alternative approaches in the treatment of microbe-associated infections nowadays because of its considerable potential in effective eradication of pathogenic bacteria. However, overwhelming reactive oxygen species (ROS) generated from phototherapy inevitably provoke an inflammatory response, complicating the healing process. To address this outstanding issue, a MXene-decorated nanofibrious is devised that not only yield localized heat but also elevate ROS levels under near-infrared laser exposure ascribed to the synergistic photothermal/photodynamic effect, for potent bacterial inactivation. After being further loaded with aspirin, the nanofibrous membranes exhibit benign cytocompatibility, boosting cell growth and suppressing the (nuclear factor kappa-B ( NF-κB) signaling pathways through RNA sequencing analysis, indicating an excellent anti-inflammatory effect. Interestingly, in vivo investigations also corroborate that the nanofibrous membranes accelerate infectious cutaneous regeneration by efficiently killing pathogenic bacteria, promoting collagen deposition, boosting angiogenesis, and dampening inflammatory reaction via steering NF-κB pathway. As envisaged, this work furnishes a decorated nanofibrous membrane with programmed antibacterial and anti-inflammatory effects for remedy of refractory bacteria-invaded wound regeneration.


Asunto(s)
FN-kappa B , Nanofibras , Nitritos , Elementos de Transición , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas , Antiinflamatorios/farmacología , Antibacterianos/farmacología
2.
Molecules ; 27(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080211

RESUMEN

Polymeric ultrafine fibrous membranes (UFMs) with high thermal stability and high whiteness are highly desired in modern optoelectronic applications. A series of fluoro-containing polyimide (FPI) UFMs with high whiteness, good thermal stability, and good hydrophobicity were prepared via a one-step electrospinning procedure from the organo-soluble FPI resins derived from a fluoro-containing dianhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and various diamines containing either pendant trifluoromethyl (-CF3) groups or alicyclic units in the side chains. The obtained FPI UFMs, including FPI-1 from 6FDA and 3,5-diaminobenzotrifluoride (TFMDA), FPI-2 from 6FDA and 2'-trifluoromethyl-3,4'-oxydianiline (3FODA), FPI-3 from 6FDA and 1,4-bis[(4-amino-2-trifluoromethyl)phenoxy]benzene (6FAPB), FPI-4 from 4,4'-bis[(4-amino-2-trifluoromethyl)phenoxy]biphenyl (6FBAB), and FPI-5 from 6FDA and 4'-tert-butyl-cyclohexyl-3,5-diaminobenzoate (DABC) showed whiteness indices (WI) higher than 87.00 and optical reflectance values higher than 80% at the wavelength of 457 nm (R457), respectively. The FPI-5 UFM, especially, showed the highest WI of 92.88. Meanwhile, the prepared PI UFMs exhibited good hydrophobic features with water contact angles (WCA) higher than 105°. At last, the PI UFMs exhibited good thermal stability with glass transition temperatures (Tg) higher than 255 °C, and the 5% weight-loss temperatures (T5%) higher than 510 °C in nitrogen.


Asunto(s)
Anhídridos , Polímeros , Anhídridos/química , Diaminas/química , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Temperatura de Transición
3.
Angew Chem Int Ed Engl ; 61(41): e202208949, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35862255

RESUMEN

Inspired by the self-healing function of living organisms, self-healing materials have been developed in recent decades to very high standards. As a new direction, self-healing fibrous membranes (SFMs) exhibit both the configuration of a porous structure and self-healing capability within one material. Different from nonporous self-healing materials, it is more challenging to introduce self-healing properties to porous fibrous membrane materials owing to the more complex healing mechanism and microstructure of SFMs. This Minireview focuses on the self-healing mechanisms, design principles, and preparation strategies of SFMs. The characteristics of SFM self-healing performance are introduced in detail, and insights and perspectives of SFM preparation and healing mechanisms are put forward. Furthermore, remaining challenges and future developments of SFMs are presented, where the ultimate goal is the design of highly efficient self-healing and superstable fibrous membranes.


Asunto(s)
Cicatrización de Heridas , Porosidad
4.
Angew Chem Int Ed Engl ; 61(22): e202200226, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35212123

RESUMEN

Considerable effort has been devoted to the fabrication of electronic skin that can imitate the self-healing and sensing function of biological skin. Almost all self-healing electronic skins are composed of airtight elastomers or hydrogels, which will cause skin inflammation. Fibrous membranes are ideal materials for preparing highly sensitive breathable electronic skins. However, the development of intrinsically self-healing fibrous membranes with high stability is still a challenge. Here, a novel interface protective strategy is reported to develop intrinsically self-healing fibrous membranes with a bionic confined structure for the first time, which were further assembled into an all-fiber structured electronic skin through interfacial hydrogen bonding. The electronic skin is multifunctional with self-powering, self-healing, breathability, stretchability, and thermochromism functionalities, which is highly promising for application in intelligent wearable sensing systems.


Asunto(s)
Biónica , Dispositivos Electrónicos Vestibles , Elastómeros/química , Hidrogeles , Enlace de Hidrógeno
5.
Adv Funct Mater ; 31(47): 2103477, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34512227

RESUMEN

SARS-CoV-2, the virus that caused the COVID-19 pandemic, can remain viable and infectious on surfaces for days, posing a potential risk for fomite transmission. Liquid-based disinfectants, such as chlorine-based ones, have played an indispensable role in decontaminating surfaces but they do not provide prolonged protection from recontamination. Here a safe, inexpensive, and scalable membrane with covalently immobilized chlorine, large surface area, and fast wetting that exhibits long-lasting, exceptional killing efficacy against a broad spectrum of bacteria and viruses is reported. The membrane achieves a more than 6 log reduction within several minutes against all five bacterial strains tested, including gram-positive, gram-negative, and drug-resistant ones as well as a clinical bacterial cocktail. The membrane also efficiently deactivated nonenveloped and enveloped viruses in minutes. In particular, a 5.17 log reduction is achieved against SARS-CoV-2 after only 10 min of contact with the membrane. This membrane may be used on high-touch surfaces in healthcare and other public facilities or in air filters and personal protective equipment to provide continuous protection and minimize transmission risks.

6.
Small ; 14(32): e1801527, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30004631

RESUMEN

Directional water transport is a predominant part of functional textiles used for continuous sweat release in daily life. However, it has remained a great challenge to design such textiles which ensure continuous directional water transport and superior prevention of water penetration in the reverse direction. Here, a scalable strategy is reported to create trilayered fibrous membranes with progressive wettability by introducing a transfer layer, which can guide the directional water transport continuously and spontaneously, thus preventing the skin from being rewetted. The resulting trilayered fibrous membranes exhibit a high one-way transport index R (1021%) and a desired breakthrough pressure (16.1 cm H2 O) in the reverse direction, indicating an ultrahigh directional water transport capacity. Moreover, on the basis of water transport behavior, a plausible mechanism is proposed to provide insight into the integrative and cooperative driving forces at the interfaces of trilayered hydrophobic/transfer/superhydrophilic fibrous membranes. The successful synthesis of such fascinating materials would be valuable for the design of functional textiles with directional water transport properties for personal drying applications.


Asunto(s)
Acción Capilar , Membranas Artificiales , Textiles , Agua/química , Resinas Acrílicas/química , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Dióxido de Silicio/química
7.
Int J Biol Macromol ; 257(Pt 2): 128698, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103664

RESUMEN

In order to fabricate a novel antioxidant nanofiber facial mask, a metal cone modified in-situ electrospinning with precise deposition was employed by utilizing Enteromorpha prolifera polysaccharides (EPPs). The metal cone could control the deposition area to achieve precise fabrication of facial mask on skin. The EPPs exhibited remarkable antioxidant ability, as evidenced by the half-maximal inhibitory concentrations (IC50) of 1.44 mg/mL and 0.74 mg/mL against DPPH and HO• free radicals, respectively. The antioxidant ability of the facial mask was improved by elevating the electrospinning voltage from 15 kV to 19 kV, due to the improved release capacity of EPPs by 7.09 %. Moreover, the facial mask demonstrated robust skin adhesion and moisture-retaining properties compared with commercial facial mask, which was benefited by the in-situ electrospinning technology. Furthermore, cytotoxicity assay, animal skin irritation test, and ocular irritation test collectively affirmed the safety of the facial mask. Thus, this research introduces a novel in situ electrospinning with precise deposition method and a natural antioxidant additive for preparing facial mask.


Asunto(s)
Algas Comestibles , Nanofibras , Ulva , Animales , Antioxidantes/farmacología , Ulva/química , Polisacáridos/farmacología , Polisacáridos/química
8.
Int J Biol Macromol ; 226: 1079-1087, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36436595

RESUMEN

Bone defects cause serious psychological and economic burden to patients. Artificially bone repairing materials bring hope to the treatment of bone defects. Electrospun technique has attracted great attention since it can fabricate fibers from nano- to micro- scale continuously. Scaffolds fabricated by electrospun can mimic the structure of extracellular matrix which is beneficial to cell adhesion and migration. Researches have showed that bioactive ions (such as silicon and calcium ions) can promote bone regeneration. In addition, physical cues can affect cellular behavior such as cell adhesion and differentiation. In this study, two kinds of calcium silicate - adopted poly (L-lactic acid) (CS-PLLA) electrospun scaffolds with random/aligned structures were prepared by electrospun to promote bone regeneration. The integration of CS nanowires improved the biological property of PLLA electrospun scaffolds. Furthermore, in vitro results indicated that aligned 1 wt% CS adopted PLLA (PCA1) electrospun scaffolds with better physical properties and facilitated cell adhesion, improved alkaline phosphate (ALP) activity and the expression of osteogenic genes (Osteopontin (OPN), Collagen type 1 (Col-1) and Bone morphogenetic protein-2 (BMP-2)) compared with random 1 wt% CS adopted PLLA (PCR1) electrospun scaffolds. In conclusion, the prepared PCA1 electrospun scaffolds might be a potential candidate for bone regeneration in defect areas.


Asunto(s)
Nanofibras , Nanocables , Humanos , Osteogénesis , Nanofibras/química , Poliésteres/química , Diferenciación Celular , Andamios del Tejido/química , Ingeniería de Tejidos , Proliferación Celular
9.
Adv Healthc Mater ; 12(18): e2203105, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36912184

RESUMEN

Guided bone regeneration membranes are widely used to prevent fibroblast penetration and facilitate bone defect repair by osteoblasts. However, the current clinically available collagen membranes lack bone induction and angiogenic capacities, exhibiting limited bone regeneration. The mechanically sensitive channel, Piezo1, which is activated by Yoda1, has been reported to play crucial roles in osteogenesis and angiogenesis. Nevertheless, the application of Yoda1 alone is unsustainable to maintain this activity. Therefore, this study fabricates a Yoda1-loading bilayer membrane using electrospinning technology. Its inner layer in contact with the bone defect is composed of vertically aligned fibers, which regulate the proliferation and differentiation of cells, release Yoda1, and promote bone regeneration. Its outer layer in contact with the soft tissue is dense with oriented fibers by UV cross-linking, mainly preventing fibroblast infiltration and inhibiting the immune response. Furthermore, the loaded Yoda1 affects osteogenesis and angiogenesis via the Piezo1/RhoA/Rho-associated coiled-coil-containing protein kinase 1/Yes1-associated transcriptional regulator signaling pathway. The results reveal that the Yoda1 bilayer membrane is efficient and versatile in accelerating bone regeneration, suggesting its potential as a novel therapeutic agent for various clinical issues.


Asunto(s)
Regeneración Ósea , Canales Iónicos , Osteogénesis , Transducción de Señal , Canales Iónicos/metabolismo , Membranas/metabolismo , Inductores de la Angiogénesis , Pirazinas , Tiadiazoles
10.
J Hazard Mater ; 458: 132010, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423132

RESUMEN

Traditional polymeric fibrous membranes have been extensively used to reduce the health risks caused by airborne particulate matter (PM), leading to the dramatically increasing pollution of plastics and microplastics. Although great efforts have been made to develop poly(lactic acid) (PLA)-based membrane filters, they are frequently dwarfed by their relatively poor electret properties and electrostatic adsorptive mechanisms. To resolve this dilemma, a bioelectret approach was proposed in this work, strategically involving the bioinspired adhesion of dielectric hydroxyapatite nanowhiskers as a biodegradable electret to promote the polarization properties of PLA microfibrous membranes. In addition to significant improvements in tensile properties, the incorporation of hydroxyapatite bioelectret (HABE) enabled remarkable increase in the removal efficiencies of ultrafine PM0.3 in a high-voltage electrostatic field (10 and 25 kV). This was exemplified by the largely increased filtering performance (69.75%, 23.1 Pa) for PLA membranes loaded with 10 wt% HABE at the normal airflow rate (32 L/min) compared to the pristine PLA counterpart (32.89%, 7.2 Pa). Although the filtration efficiency of PM0.3 for the counterpart dramatically decreased to 21.6% at 85 L/min, the increment was maintained at nearly 196% for the bioelectret PLA, while an ultralow pressure drop (74.5 Pa) and high humidity resistance (RH 80%) were achieved. The unusual property combination were ascribed to the HABE-enabled realization of multiple filtration mechanisms, including the simultaneous enhancement of physical interception and electrostatic adsorption. The significant filtration applications, unattainable with conventional electret membranes, demonstrate the bioelectret PLA as a promising biodegradable platform that allows high filtration properties and humidity resistance.

11.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364516

RESUMEN

Delayed diabetic wound healing is an adverse event that frequently leads to limb disability or loss. A novel and promising vehicle for the treatment of diabetic wounds is required for clinical purposes. The biocompatible and resorbable poly (lactic-co-glycolic acid) (PLGA)-based fibrous membranes prepared by electrospinning that provide a sustained discharge of saxagliptin for diabetic wound healing were fabricated. The concentration of released saxagliptin in Dulbecco's phosphate-buffered saline was analyzed for 30 days using high-performance liquid chromatography. The effectiveness of the eluted saxagliptin was identified using an endothelial progenitor cell migration assay in vitro and a diabetic wound healing in vivo. Greater hydrophilicity and water storage were shown in the saxagliptin-incorporated PLGA membranes than in the pristine PLGA membranes (both p < 0.001). For diabetic wound healing, the saxagliptin membranes accelerated the wound closure rate, the dermal thickness, and the heme oxygenase-1 level over the follicle areas compared to those in the pristine PLGA group at two weeks post-treatment. The saxagliptin group also had remarkably higher expressions of insulin-like growth factor I expression and transforming growth factor-ß1 than the control group (p = 0.009 and p < 0.001, respectively) in diabetic wounds after treatment. The electrospun PLGA-based saxagliptin membranes exhibited excellent biomechanical and biological features that enhanced diabetic wound closure and increased the antioxidant activity, cellular granulation, and functionality.

12.
Nanomaterials (Basel) ; 12(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36080108

RESUMEN

One-way water transport is a predominant feature of comfortable textiles used in daily life. However, shortcomings related to the textiles include their poor breathability and durability. In this study, low-cost and eco-friendly PLA/low-melt (polylactic acid) LMPLA-thermoplastic polyurethane (TPU) membranes were fabricated through a needle punch/hot press and electrospinning method. The micro-/nano-channels, used for the first time, endowed the composite membranes with robust, breathable, moisture-permeable, and abrasion-resistant performance. By varying the nano- layer thickness, the resulting 16-40 µm membranes exhibited excellent one-way water transport, robust breathability and moisture permeability, and good abrasion resistance. Nano-layer thickness was found to be a critical performance factor, balancing comfort and protection. These results may be useful for developing low-cost, eco-friendly, and versatile protective products for medical application.

13.
Acta Biomater ; 124: 15-32, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508510

RESUMEN

Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion formed. Thus far, treatment options remain limited with prophylactic anti-inflammatory medications and revision surgeries constituting the only tools within the doctors' armamentarium - neither of which provides reliable outcomes. In this review, the authors aim to collate the current understanding of the pathophysiological mechanisms underlying tendon adhesion formation, highlighting the significant role ascribed to the inflammatory cascade in accelerating adhesion formation. The bulk of this article will then be dedicated to critically appraising different therapeutic structures like nanoparticles, hydrogels and fibrous membranes fabricated by various cutting-edge technologies for adhesion formation prophylaxis. Emphasis will be placed on the role of the fibrous membranes, their ability to act as drug delivery vehicles as well as the combination with other therapeutic structures (e.g., hydrogel or nanoparticles) or fabrication technologies (e.g., weaving or braiding). Finally, the authors will provide an opinion as to the future direction of the prevention of tendon adhesion formation in view of scaffold structure and function designs.


Asunto(s)
Calidad de Vida , Tendones , Humanos , Hidrogeles , Tecnología , Tendones/patología , Adherencias Tisulares/patología , Adherencias Tisulares/prevención & control
14.
ACS Appl Mater Interfaces ; 13(1): 2081-2090, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33351576

RESUMEN

Waterproof and breathable membranes (WBMs) are highly demanded worldwide due to their promising applications in outdoor protective clothing, medical hygiene, and electronic devices. However, the design of such materials integrated with environmental friendliness and high functionality has been considered a long-standing challenge. Herein, we report the green-solvent-processed polyamide fibrous membranes with amphiphobicity and bonding structure via ethanol-based electrospinning and water-based impregnating techniques, endowing the fibrous membranes with outstanding water/oil/dust-resistant and good breathable properties. The developed green smart fibrous membranes exhibit integrated properties with robust water and oil intrusion pressures of 101.2 and 32.4 kPa, respectively, excellent dust removal efficiency of above 99.9%, good water vapor transmission rate of 11.2 kg m-2 d-1, air permeability of 2.6 mm s-1, tensile strength of 15.6 MPa, and strong toughness of 22.8 MJ m-3, enabling the membranes to protect human beings and electronic devices effectively. This work may shed light on designing the next generation green smart fibrous WBMs for protective textiles.

15.
J Colloid Interface Sci ; 592: 310-318, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33676193

RESUMEN

Skin-like flexible membrane with excellent water resistance and moisture permeability is an urgent need in the wound dressing field to provide comfort and protection for the wound site. Despite efforts that have been made in the development of waterproof and breathable (W&B) membranes, the in-situ electrospinning of W&B membranes suitable for irregular wound surfaces as wound dressings still faces huge challenges. In the current work, a portable electrospinning device with multi-functions, including adjustable perfusion speed for a large range from 0.05 mL/h to 10 mL/h and high voltage up to 11 kV, was designed. The thymol-loaded ethanol-soluble polyurethane (EPU) skin-like W&B nanofibrous membranes with antibacterial activity were fabricated via the custom-designed device. Ultimately, the resultant nanofibrous membranes composed of EPU, fluorinated polyurethane (FPU), and thymol presented uniform structure, robust waterproofness with the hydrostatic pressure of 17.6 cm H2O, excellent breathability of 3.56 kg m-2 d-1, the high tensile stress of 1.83 MPa and tensile strain of 453%, as well as high antibacterial activity. These results demonstrate that the new-type device has potential as a portable electrospinning apparatus for the fabrication of antibacterial membranes directly on the wound surface and puts a new way for the development of portable electrospinning devices.


Asunto(s)
Poliuretanos , Timol , Antibacterianos/farmacología , Vendajes , Permeabilidad
16.
ACS Appl Mater Interfaces ; 12(13): 15911-15918, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32141740

RESUMEN

Developing environmentally benign, multifunctional waterproof and breathable membranes (WBMs) is of great importance but still faces enormous challenges. Here, an environmentally benign fluorine-free, ultraviolet (UV) blocking, and antibacterial WBM with a high level of waterproofness and breathability is developed on a large scale by combining electrospinning and step-by-step surface coating technology. Fluorine-free water-based alkylacrylates with long hydrocarbon chains were coated onto polyamide 6 fibrous membranes to construct robust hydrophobic surfaces. The subsequent titanium dioxide nanoparticle emulsion coating prominently decreased the maximum pore size, leading to higher water resistance, endowing the membranes with efficient UV-resistant and antibacterial properties. The resulting fibrous membranes possessed excellent waterproofness of 106.2 kPa, exceptional breathability of 10.3 kg m-2 d-1, a significant UV protection factor of 430.5, together with a definite bactericidal efficiency of 99.9%. We expect that this methodology for construction of environmentally benign and multifunctional WBMs will shed light on the material design, and the prepared membranes could implement their promising applications in covering materials, outdoor equipment, protective clothing, and high-altitude garments.

17.
J Hazard Mater ; 373: 197-203, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30921570

RESUMEN

Airborne particulate matter (PM) pollution has become a serious environmental problem. Thus, there is a need for the development of air filters with satisfactory overall performance. In this paper, we develop a kind of ß-cyclodextrin (ß-CD) based air filter with high strength, which has not only high filtration efficiency (about 99%) but also good air permeability (the pressure drop is only 45Pa). Especially after long-term application, the pression drop of ß-cyclodextrin based was less than half of the commercial air-filter. Additionally, the material can capture the toxic gasous chemicals (e.g. formaldehyde and SO2). The introduction of ß-CD is supposed to be the key factor for improvement of air filter.

18.
ACS Appl Mater Interfaces ; 10(36): 30887-30894, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30110152

RESUMEN

Flexible smart membranes with superior waterproofness and extreme breathability are highly desirable for wearable uses. However, present waterproof and breathable materials suffer from limited performance efficiency, alarming environmental risks, and complicated fabrication procedures. We report on eco-friendly fibrous membranes with human skin-like, robust waterproof, and highly breathable capabilities that can be prepared via a facile electrospinning strategy. A novel polyurethane elastomer (C4FPU) possessing double-terminal short perfluorobutyl (-C4F9) chain is synthesized for the first time and incorporated into the polyurethane (PU) fiber matrix, endowing the membrane with mighty and durable hydrophobicity. Additionally, the employment of AgNO3 greatly decreased the maximum pore size ( dmax), contributing to the dramatically enhanced waterproofness. The resulting PU/C4FPU/AgNO3 fibrous membranes exhibit comprehensive properties of exceptional hydrostatic pressure (102.8 kPa), excellent water vapor transmission rate (12.9 kg m-2 d-1), high mechanical property (9.8 MPa), and significant antibacterial efficacy against Escherichia coli and Staphylococcus aureus. The successful synthesis of these intriguing membranes may provide a promising candidate for the new generation of key building blocks of the upscale protective garments.


Asunto(s)
Poliuretanos/síntesis química , Textiles , Antibacterianos/química , Conservación de los Recursos Naturales , Elastómeros/química , Escherichia coli/efectos de los fármacos , Humanos , Membranas Artificiales , Poliuretanos/química , Poliuretanos/farmacología , Nitrato de Plata/química , Staphylococcus aureus/efectos de los fármacos
19.
J Hazard Mater ; 325: 214-222, 2017 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-27940110

RESUMEN

Graphene oxide (GO)-embedded titanate nanofiber (TNF) membranes with improved filtration performance are prepared successfully by a two-step method including electrostatic assembly of GO and TNFs into hybrids and subsequent processing of them into membranes by vacuum filtration. The embedded contents of GO sheets in films and thickness of as-assembled films can be adjusted facilely, endowing such composite films with good processability. Owing to the skilful introduction of GO sheets, the pore and/or channel structures in these hybrid membranes are modified. By treating different dye solutions (Direct Yellow and Direct Red), the filtration properties of these membranes show that the introduction of certain amount of GO sheets efficiently improve the separation performance of the membranes. Interestingly, these GO-embedded TNF membranes also display superior selective separation performance on filtrating the mixture solutions of such two dyes, making these hierarchical membranes more flexible and versatile in water treatment areas.

20.
J Hazard Mater ; 317: 485-493, 2016 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-27341377

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) were used as modified materials to improve the performance of laccase-carrying electrospun fibrous membranes (LCEFMs). The MWCNTs modified LCEFMs (MWCNTs-LCEFMs) were successfully fabricated via emulsion electrospinning, with active laccase and MWCNTs encapsulated inside the fibers. After modified by an optimal amount (1.5wt%, vs. polymer) of MWCNTs, the obtained MWCNTs-LCEFMs showed not only higher activity recovery (85.3%, vs. free laccase) than LCEFMs (71.2%), but also better storage and operational stability, which were mainly attributed to the promoted electron transfer in laccase-catalytic reaction. Furthermore, the specific surface area and tensile strength of MWCNTs-LCEFMs have also been enhanced nearly 2 and 3 times than those of LCEFMs, respectively. The MWCNTs-LCEFMs were applied to remove the widespread bisphenol A from water, where their removal efficiency reached above 90%, with the degradation efficiency accounting for over 80%, and their adsorption efficiency increased about 45% than that of LCEFMs. In addition, the endurances of MWCNTs-LCEFMs to environmental factors such as pH and temperature were also improved.


Asunto(s)
Compuestos de Bencidrilo/análisis , Enzimas Inmovilizadas/química , Lacasa/química , Membranas Artificiales , Nanofibras/química , Nanotubos de Carbono/química , Fenoles/análisis , Contaminantes Químicos del Agua/análisis , Conductividad Eléctrica , Emulsiones , Modelos Teóricos , Resistencia a la Tracción , Purificación del Agua/instrumentación , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA