Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(10): 2649-2664.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33848463

RESUMEN

Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.


Asunto(s)
Condensados Biomoleculares/metabolismo , Gránulos Citoplasmáticos/metabolismo , Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Activación Enzimática , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Células HEK293 , Humanos , Proteína SOS1/metabolismo , Transducción de Señal
2.
Cell ; 174(3): 758-769.e9, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033370

RESUMEN

While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression. Tandem duplication hotspots also occur near MYC, in lncRNAs associated with post-translational MYC regulation. Classes of structural variations were linked to distinct DNA repair deficiencies, suggesting their etiology, including associations of CDK12 mutation with tandem duplications, TP53 inactivation with inverted rearrangements and chromothripsis, and BRCA2 inactivation with deletions. Together, these observations provide a comprehensive view of how structural variations affect critical regulators in metastatic prostate cancer.


Asunto(s)
Variación Estructural del Genoma/genética , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Proteína BRCA2/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Variaciones en el Número de Copia de ADN , Exoma , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Secuencias Repetidas en Tándem/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma/métodos
3.
Mol Cell ; 82(15): 2738-2753.e6, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35662392

RESUMEN

The proper function of the genome relies on spatial organization of DNA, RNA, and proteins, but how transcription contributes to the organization is unclear. Here, we show that condensates induced by transcription inhibition (CITIs) drastically alter genome spatial organization. CITIs are formed by SFPQ, NONO, FUS, and TAF15 in nucleoli upon inhibition of RNA polymerase II (RNAPII). Mechanistically, RNAPII inhibition perturbs ribosomal RNA (rRNA) processing, releases rRNA-processing factors from nucleoli, and enables SFPQ to bind rRNA. While accumulating in CITIs, SFPQ/TAF15 remain associated with active genes and tether active chromatin to nucleoli. In the presence of DNA double-strand breaks (DSBs), the altered chromatin compartmentalization induced by RNAPII inhibition increases gene fusions in CITIs and stimulates the formation of fusion oncogenes. Thus, proper RNAPII transcription and rRNA processing prevent the altered compartmentalization of active chromatin in CITIs, suppressing the generation of gene fusions from DSBs.


Asunto(s)
Cromatina , Transcripción Genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
4.
Genes Dev ; 36(15-16): 874-875, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207139

RESUMEN

Loss of the NF2 tumor suppressor gene is a common finding in meningiomas, and more recently YAP1 fusions have been found in a subset of pediatric NF2 wild-type meningiomas. In the previous issue of Genes & Development, Szulzewsky and colleagues (pp. 857-870) showed that TEAD-dependent YAP1 activity by either the loss of the NF2 gene or YAP1-MAML2 fusion is an oncogenic process promoting meningioma tumorigenesis. Furthermore, pharmacological inhibition of YAP1-TEAD resulted in antitumor activity in both YAP1 fusion-positive and NF2 mutant meningiomas. Together, these data indicate that disruption of the YAP1-TEAD interaction raises a potential therapeutic option for these tumors that requires future investigation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neoplasias Meníngeas , Meningioma , Factores de Transcripción/metabolismo , Carcinogénesis/genética , Niño , Humanos , Neoplasias Meníngeas/genética , Meningioma/genética , Meningioma/patología , Oncogenes , Factores de Transcripción/genética
5.
Genes Dev ; 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008139

RESUMEN

YAP1 is a transcriptional coactivator regulated by the Hippo signaling pathway, including NF2. Meningiomas are the most common primary brain tumors; a large percentage exhibit heterozygous loss of chromosome 22 (harboring the NF2 gene) and functional inactivation of the remaining NF2 copy, implicating oncogenic YAP activity in these tumors. Recently, fusions between YAP1 and MAML2 have been identified in a subset of pediatric NF2 wild-type meningiomas. Here, we show that human YAP1-MAML2-positive meningiomas resemble NF2 mutant meningiomas by global and YAP-related gene expression signatures. We then show that expression of YAP1-MAML2 in mice induces tumors that resemble human YAP1 fusion-positive and NF2 mutant meningiomas by gene expression. We demonstrate that YAP1-MAML2 primarily functions by exerting TEAD-dependent YAP activity that is resistant to Hippo signaling. Treatment with YAP-TEAD inhibitors is sufficient to inhibit the viability of YAP1-MAML2-driven mouse tumors ex vivo. Finally, we show that expression of constitutively active YAP1 (S127/397A-YAP1) is sufficient to induce similar tumors, suggesting that the YAP component of the gene fusion is the critical driver of these tumors. In summary, our results implicate YAP1-MAML2 as a causal oncogenic driver and highlight TEAD-dependent YAP activity as an oncogenic driver in YAP1-MAML2 fusion meningioma as well as NF2 mutant meningioma in general.

6.
Genes Dev ; 35(7-8): 495-511, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766984

RESUMEN

Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Carcinogénesis/genética , Células Endoteliales/patología , Regulación Neoplásica de la Expresión Génica , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transactivadores/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Fusión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Transactivadores/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
7.
Genes Dev ; 34(15-16): 1051-1064, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32675324

RESUMEN

YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Ratones , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Señales de Localización Nuclear , Motivos de Nucleótidos , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Trends Genet ; 38(1): 4-7, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34579972

RESUMEN

Chimeric RNAs are generated by the fusion of the exons or introns of two genes. The generation of chimeric RNAs is important for the functional expansion of cells. Here, we describe the functional implications of chimeric RNAs for generating phenotypic plasticity from an evolutionary perspective.


Asunto(s)
Fusión Génica , ARN , Adaptación Fisiológica , Evolución Biológica , Exones , Humanos , ARN/genética
9.
J Pathol ; 262(2): 147-160, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38010733

RESUMEN

TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Adolescente , Humanos , Genes p53 , Osteosarcoma/genética , Osteosarcoma/patología , Mutación , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Regiones Promotoras Genéticas/genética , Fusión Génica , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
J Pathol ; 263(1): 61-73, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38332737

RESUMEN

Alterations in kinase genes such as NTRK1/2/3, RET, and BRAF underlie infantile fibrosarcoma (IFS), the emerging entity 'NTRK-rearranged spindle cell neoplasms' included in the latest WHO classification, and a growing set of tumors with overlapping clinical and pathological features. In this study, we conducted a comprehensive clinicopathological and molecular analysis of 22 cases of IFS and other kinase gene-altered spindle cell neoplasms affecting both pediatric and adult patients. Follow-up periods for 16 patients ranged in length from 10 to 130 months (mean 38 months). Six patients were treated with targeted therapy, achieving a partial or complete response in five cases. Overall, three cases recurred and one metastasized. Eight patients were free of disease, five were alive with disease, and two patients died. All cases showed previously reported morphological patterns. Based on the cellularity and level of atypia, cases were divided into three morphological grade groups. S100 protein and CD34 were at least focally positive in 12/22 and 14/22 cases, respectively. Novel PWWP2A::RET, NUMA1::RET, ITSN1::RAF1, and CAPZA2::MET fusions, which we report herein in mesenchymal tumors for the first time, were detected by RNA sequencing. Additionally, the first uterine case with BRAF and EGFR mutations and CD34 and S100 co-expression is described. DNA sequencing performed in 13 cases uncovered very rare additional genetic aberrations. The CNV profiles showed that high-grade tumors demonstrate a significantly higher percentage of copy number gains and losses across the genome compared with low- and intermediate-grade tumors. Unsupervised clustering of the tumors' methylation profiles revealed that in 8/9 cases, the methylation profiles clustered with the IFS methylation class, irrespective of their clinicopathological or molecular features. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Fibrosarcoma , Neoplasias de los Tejidos Conjuntivo y Blando , Neoplasias de los Tejidos Blandos , Adulto , Humanos , Niño , Receptor trkA/genética , Proteínas Proto-Oncogénicas B-raf/genética , Recurrencia Local de Neoplasia/genética , Fibrosarcoma/genética , Fibrosarcoma/patología , Neoplasias de los Tejidos Blandos/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Proteínas de Fusión Oncogénica/genética
11.
Genes Chromosomes Cancer ; 63(1): e23189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37421230

RESUMEN

Malignant pleural mesothelioma (MPM), a rare cancer a long latency period (up to 40 years) between asbestos exposure and disease presentation. The mechanisms coupling asbestos to recurrent somatic alterations are poorly defined. Gene fusions arising through genomic instability may create novel drivers during early MPM evolution. We explored the gene fusions that occurred early in the evolutionary history of the tumor. We conducted multiregional whole exome sequencing (WES) of 106 samples from 20 patients undergoing pleurectomy decortication and identified 24 clonal nonrecurrent gene fusions, three of which were novel (FMO9P-OR2W5, GBA3, and SP9). The number of early gene fusion events detected varied from zero to eight per tumor, and presence of gene fusions was associated with clonal losses involving the Hippo pathway genes and homologous recombination DNA repair genes. Fusions involved known tumor suppressors BAP1, MTAP, and LRP1B, and a clonal oncogenic fusion involving CACNA1D-ERC2, PARD3B-NT5DC2, and STAB2-NT5DC2 fusions were also identified as clonal fusions. Gene fusions events occur early during MPM evolution. Individual fusions are rare as no recurrent truncal fusions event were found. This suggests the importance of early disruption of these pathways in generating genomic rearrangements resulting in potentially oncogenic gene fusions.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/genética , Vía de Señalización Hippo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesotelioma/genética , Reparación del ADN/genética , Fusión Génica
12.
Genes Chromosomes Cancer ; 63(5): e23244, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38747338

RESUMEN

We describe a case of a pleomorphic adenoma (PA) arising from the para-tracheal accessory salivary gland in a 44-year-old male harboring a novel WWTR1::NCOA2 gene fusion. To our knowledge, this novel gene fusion has not been described previously in salivary gland tumors. The patient presented with hoarseness of voice. The radiological exam revealed a mass in the upper third of the trachea involving the larynx. Histologically, the tumor consisted of bland-looking monocellular eosinophilic epithelial cells arranged in cords and sheets separated by thin fibrous stroma, focally forming a pseudo-tubular pattern. In immunohistochemistry, the tumor cells demonstrated positivity for CK7, PS100, SOX10, and HMGA2; and negativity for CK5/6, p40 p63, and PLAG1. In addition, the clustering analysis clearly demonstrates a clustering of tumors within the PA group. In addition to reporting this novel fusion in the PA spectrum, we discuss the relevant differential diagnoses and briefly review of NCOA2 and WWTR1 gene functions in normal and neoplastic contexts.


Asunto(s)
Proteína HMGA2 , Coactivador 2 del Receptor Nuclear , Transactivadores , Humanos , Masculino , Coactivador 2 del Receptor Nuclear/genética , Coactivador 2 del Receptor Nuclear/metabolismo , Adulto , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Transactivadores/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Neoplasias de las Glándulas Salivales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Fusión Oncogénica/genética , Mioepitelioma/genética , Mioepitelioma/patología , Mioepitelioma/metabolismo
13.
Genes Chromosomes Cancer ; 63(1): e23202, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37724934

RESUMEN

Glomus tumors are classified as members of the perivascular myoid family of tumors. Nearly half of these show NOTCH-gene fusions and a smaller subset has BRAF V600E mutations. Here, we report a novel ATG7::RAF1 fusion in malignant glomus tumor occurring in a 40-year-old female which has not been reported in the malignant glomus tumor before. A 40-year-old female presented with a persistent lateral heel pain and an increase in the size of a mass along the lateral ankle for nearly 10 years. Resected specimen showed a well circumscribed lesion composed of spindled and epithelioid cells with moderate nuclear atypia and mitotic figures (7/10 high-power fields) including atypical forms without any necrosis, lymphovascular, or perineural invasion. The tumor was positive for smooth muscle actin, smooth muscle myosin heavy chain, H-caldesmon, collagen type IV, and discovered on gastronintestinal stromal tumors-1 but negative for AE1/3, desmin, S-100, CD34, and CD117. RNA sequencing showed presence of ATG7-RAF1 fusion. This fusion has not been reported in the malignant glomus tumor before. Future studies on larger cohorts are needed to ascertain the biological significance of these tumors with novel gene fusions.


Asunto(s)
Tumor Glómico , Sarcoma , Neoplasias de los Tejidos Blandos , Femenino , Humanos , Adulto , Tumor Glómico/genética , Tumor Glómico/patología , Proteínas S100/genética , Fusión Génica , Biomarcadores de Tumor/genética
14.
Lab Invest ; 104(1): 100283, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931683

RESUMEN

Osteosarcoma is the most common primary bone malignancy, often detected in children and adolescents and commonly associated with TP53 alterations along with a high number of chromosomal rearrangements. However, osteosarcoma can affect patients of any age, and some tumors display less genetic complexity. Besides TP53 variants, data on key driving mutations are lacking for many osteosarcomas, particularly those affecting adults. To detect osteosarcoma-specific alterations, we screened transcriptomic and genomic sequencing and copy number data from 150 bone tumors originally diagnosed as osteosarcomas. To increase the precision in gene fusion detection, we developed a bioinformatic tool denoted as NAFuse, which extracts gene fusions that are verified at both the genomic and transcriptomic levels. Apart from the already reported genetic subgroups of osteosarcoma with TP53 structural variants, or MDM2 and/or CDK4 amplification, we did not identify any recurrent genetic driver that signifies the remaining cases. Among the plethora of mutations identified, we found genetic alterations characteristic of, or similar to, those of other bone and soft tissue tumors in 8 cases. These mutations were found in tumors with relatively few other genetic alterations or in adults. Due to the lack of clinical context and available tissue, we can question the diagnosis only on a genetic basis. However, our findings support the notion that osteosarcomas with few chromosomal alterations or adult onset seem genetically distinct from conventional osteosarcomas of children and adolescents.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adulto , Adolescente , Niño , Humanos , Proteínas Proto-Oncogénicas c-mdm2/genética , Osteosarcoma/genética , Osteosarcoma/patología , Mutación , Neoplasias Óseas/genética , Secuencia de Bases
15.
Oncologist ; 29(8): e984-e996, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38401173

RESUMEN

BACKGROUND: Genomic fusions are potent oncogenic drivers across cancer types and many are targetable. We demonstrate the clinical performance of DNA-based comprehensive genomic profiling (CGP) for detecting targetable fusions. MATERIALS AND METHODS: We analyzed targetable fusion genes in >450 000 tissue specimens profiled using DNA CGP (FoundationOne CDx, FoundationOne). Using a de-identified nationwide (US-based) non-small cell lung cancer (NSCLC) clinico-genomic database, we assessed outcomes in patients with nonsquamous NSCLC (NonSqNSCLC) who received matched therapy based on a fusion identified using DNA CGP. Lastly, we modeled the added value of RNA CGP for fusion detection in NonSqNSCLC. RESULTS: We observed a broad diversity of fusion partners detected with DNA CGP in conjunction with targetable fusion genes (ALK, BRAF, FGFR2, FGFR3, NTRK1/2/3, RET, and ROS1). In NonSqNSCLC with oncogenic ALK, NTRK, RET, and ROS1 fusions detected by DNA CGP, patients treated with a matched tyrosine kinase inhibitor had better real-world progression-free survival than those receiving alternative treatment regimens and benefit was observed regardless of the results of orthogonal fusion testing. An estimated 1.3% of patients with NonSqNSCLC were predicted to have an oncogenic driver fusion identified by RNA, but not DNA CGP, according to a model that accounts for multiple real-world factors. CONCLUSION: A well-designed DNA CGP assay is capable of robust fusion detection and these fusion calls are reliable for informing clinical decision-making. While DNA CGP detects most driver fusions, the clinical impact of fusion detection is substantial for individual patients and exhaustive efforts, inclusive of additional RNA-based testing, should be considered when an oncogenic driver is not clearly identified.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas de Fusión Oncogénica , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de Fusión Oncogénica/genética , Femenino , Masculino , Persona de Mediana Edad , Genómica/métodos , Anciano
16.
Mod Pathol ; 37(5): 100468, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460673

RESUMEN

Soft tissue neoplasms, harboring fusions between EWSR1 and FUS with genes encoding CREB transcription factors family (ATF1, CREB1, and CREM), are an emerging heterogeneous group of mesenchymal tumors that differ significantly in morphology, immunophenotypes, and behavior. Recently, EWSR1/FUS::CREB fusions have been recognized to define a group of aggressive neoplasms of epithelioid morphology with multiple growth patterns and a striking predilection for mesothelial-lined cavities. These neoplasms presenting as a primary neoplasm of intra-abdominal visceral organs are rare, which could elicit a wide range of differential diagnoses because of their diverse morphologies and immunohistochemical profiles. We report 3 cases of intra-abdominal epithelioid neoplasms with EWSR1::CREB fusions involving the kidney. This study included 2 female patients and 1 male patient, with age at presentation ranging from 17 to 61 years (mean: 32 years). All the patients underwent radical nephrectomy without adjunctive therapies. Grossly, the tumors were large, and all were solitary masses with sizes ranging from 5.6 to 30.0 cm (mean: 14.5 cm). Histologically, the neoplasms showed infiltrating and indistinct borders and were composed predominantly of monomorphic round-to-epithelioid cells with variable amounts of pale-to-clear cytoplasm, arranged in cords, nests, and sheets and embedded in a sclerotic hyalinized stroma with variable lymphoid cuffing either intermixed or at the periphery. Notably, a hemangiopericytomatous growth pattern was commonly seen. Nuclear atypia was mild, and mitotic activity was scarce. Immunohistochemically, all 3 cases were at least focally positive for epithelial membrane antigen and keratin AE1/AE3, with 2 tumors showing focal MUC4 expression and 1 case displaying diffuse CD34 and focal CAIX positivity. Targeted RNA sequencing identified EWSR1::CREM fusion in 2 cases and EWSR1::ATF1 fusion in 1 case. Subsequent fluorescence in situ hybridization analysis confirmed the RNA sequencing results. On follow-up, 1 patient developed multiple spinal bone metastases 5 months after the surgery while the other 2 patients were free of disease 9 and 120 months after diagnosis, respectively. Our findings demonstrate that intra-abdominal epithelioid neoplasms with EWSR1::CREB fusions may rarely occur primarily in the kidney and should be included in the differential diagnosis of primary renal epithelioid mesenchymal neoplasms.


Asunto(s)
Neoplasias Renales , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Diagnóstico Diferencial , Adolescente , Proteínas de Fusión Oncogénica/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Proteína EWS de Unión a ARN/genética , Adulto Joven , Neoplasias Abdominales/genética , Neoplasias Abdominales/patología , Inmunohistoquímica , Células Epitelioides/patología , Hibridación Fluorescente in Situ
17.
Mod Pathol ; 37(8): 100536, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852815

RESUMEN

ALK-rearranged renal cell carcinoma (ALK-RCC) is rare, molecularly defined RCC subtype in the recently published fifth edition of World Health Organization classification of tumors. In this study, we described 9 ALK-RCCs from a clinicopathologic, immunohistochemical, and molecular genetic aspect, supporting and extending upon the observations by previous studies regarding this rare subgroup of RCC. There were 6 male and 3 female patients with ages ranging from 14 to 59 years (mean, 34.4 years). None of the patients had sickle cell trait. The diagnosis was based on radical or partial nephrectomy specimen for 8 patients and on biopsy specimen for 1. Tumor size ranged from 2.5 to 7.2 cm (mean, 2.8 cm). Follow-up was available for 6 of 9 patients (6-36 months); 5 had no tumor recurrence or metastasis and 1 developed lung metastasis at 24 months. The patient was subsequently treated with resection of the metastatic tumor followed by crizotinib-targeted therapy, and he was alive without tumor 12 months later. Histologically, the tumors showed a mixed growth of multiple patterns, including papillary, solid, tubular, tubulocystic, cribriform, and corded, often set in a mucinous background. The neoplastic cells had predominantly eosinophilic cytoplasm. Focally, clear cytoplasm with polarized nuclei and subnuclear vacuoles (n = 1), and pale foamy cytoplasm (n = 1) were observed on the tumor cells. The biopsied tumor showed solid growth of elongated tubules merging with bland spindle cells. Other common and uncommon features included psammomatous microcalcifications (n = 5), rhabdoid cells (n = 4), prominent intracytoplasmic vacuoles (n = 4), prominent chronic inflammatory infiltrate (n = 3), signet ring cell morphology (n = 2), and pleomorphic cells (n = 2). By immunohistochemistry, all 9 tumors were diffusely positive for ALK(5A4) and 4 of 8 tested cases showed reactivity for TFE3 protein. By fluorescence in situ hybridization analysis, ALK rearrangement was identified in all the 9 tumors; none of the tested tumors harbored TFE3 rearrangement (0/4) or gains of chromosomes 7 and 17 (0/3). ALK fusion partners were identified by RNA-sequencing in all 8 cases analyzed, including EML4 (n = 2), STRN (n = 1), TPM3 (n = 1), KIF5B (n = 1), HOOK1 (n = 1), SLIT1 (n = 1), and TPM1(3' UTR) (n = 1). Our study further expands the morphologic and molecular genetic spectrum of ALK-RCC.


Asunto(s)
Quinasa de Linfoma Anaplásico , Carcinoma de Células Renales , Reordenamiento Génico , Neoplasias Renales , Proteínas Tirosina Quinasas Receptoras , Humanos , Masculino , Quinasa de Linfoma Anaplásico/genética , Persona de Mediana Edad , Femenino , Neoplasias Renales/genética , Neoplasias Renales/patología , Adulto , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Adolescente , Adulto Joven , Proteínas Tirosina Quinasas Receptoras/genética , Inmunohistoquímica , Biomarcadores de Tumor/genética , Hibridación Fluorescente in Situ , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética
18.
BMC Cancer ; 24(1): 325, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459434

RESUMEN

INTRODUCTION: T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with poor prognosis and inferior outcome. Although multiple studies have been perform on genomics of T-ALL, data from Indian sub-continent is scarce. METHODS: In the current study we aimed to identify the genetic variability of T-ALL in an Indian cohort of pediatric (age ≤ 12 years) T-ALL patients (n = 25) by whole transcriptome sequencing along with whole exome sequencing and correlated the findings with clinical characteristics and disease outcome. RESULTS: The median age was 7 years (range 3 -12 years). RNA sequencing revealed a definitive fusion event in 14 cases (56%) (including a novel fusions) with STIL::TAL1 in 4 (16%), followed by NUP21::ABL1, TCF7::SPI1, ETV6::HDAC8, LMO1::RIC3, DIAPH1::JAK2, SETD2::CCDC12 and RCBTB2::LPAR6 in 1 (4%) case each. Significant aberrant expression was noted in RAG1 (64%), RAG2 (80%), MYCN (52%), NKX3-1 (52%), NKX3-2 (32%), TLX3 (28%), LMO1 (20%) and MYB (16%) genes. WES data showed frequent mutations in NOTCH1 (35%) followed by WT1 (23%), FBXW7 (12%), KRAS (12%), PHF6 (12%) and JAK3 (12%). Nearly 88.2% of cases showed a deletion of CDKN2A/CDKN2B/MTAP genes. Clinically significant association of a better EFS and OS (p=0.01) was noted with RAG2 over-expression at a median follow up of 22 months, while a poor EFS (p=0.041) and high relapse rate (p=0.045) was observed with MYB over-expression. CONCLUSION: Overall, the present study demonstrates the frequencies of transcriptomic and genetic alterations from Indian cohort of pediatric T-ALL and is a salient addition to current genomics data sets available in T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Humanos , Preescolar , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transcriptoma , Centros de Atención Terciaria , Factores de Transcripción/genética , Mutación , Linfocitos T , Pronóstico , Forminas/genética , Histona Desacetilasas , Proteínas Represoras/genética , Receptores del Ácido Lisofosfatídico/genética
19.
Muscle Nerve ; 69(4): 477-489, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305586

RESUMEN

INTRODUCTION/AIMS: Genetics is an important risk factor for amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Recent findings demonstrate that in addition to specific genetic mutations, structural variants caused by genetic instability can also play a causative role in ALS. Genomic instability can lead to deletions, duplications, insertions, inversions, and translocations in the genome, and these changes can sometimes lead to fusion of distinct genes into a single transcript. Gene fusion events have been studied extensively in cancer; however, they have not been thoroughly investigated in ALS. The aim of this study was to determine whether gene fusions are present in ALS. METHODS: Gene fusions were identified using STAR Fusion v1.10.0 software in bulk RNA-Seq data from human postmortem samples from publicly available data sets from Target ALS and the New York Genome Center ALS Consortium. RESULTS: We report the presence of gene fusion events in several brain regions as well as in spinal cord samples in ALS. Although most gene fusions were intra-chromosomal events between neighboring genes and present in both ALS and control samples, there was a significantly greater number of unique gene fusions in ALS compared to controls. Lastly, we identified specific gene fusions with a significant burden in ALS, that were absent from both control samples and known cancer gene fusion databases. DISCUSSION: Collectively, our findings reveal an enrichment of gene fusions in ALS and suggest that these events may be an additional genetic cause linked to ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Fusión Génica
20.
J Neurooncol ; 167(1): 75-88, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38363490

RESUMEN

PURPOSE: Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA. METHODS: A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets. RESULTS: Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis. CONCLUSIONS: TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patología , Oligodendroglioma/patología , Mutación , Glioma/diagnóstico , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Astrocitoma/patología , Proteínas Tirosina Quinasas/genética , Biomarcadores , Isocitrato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA