Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 917
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(34): e2404199121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136985

RESUMEN

Low phosphate (Pi) availability decreases photosynthesis, with phosphate limitation of photosynthesis occurring particularly during grain filling of cereal crops; however, effective genetic solutions remain to be established. We previously discovered that rice phosphate transporter OsPHO1;2 controls seed (sink) development through Pi reallocation during grain filling. Here, we find that OsPHO1;2 regulates Pi homeostasis and thus photosynthesis in leaves (source). Loss-of-function of OsPHO1;2 decreased Pi levels in leaves, leading to decreased photosynthetic electron transport activity, CO2 assimilation rate, and early occurrence of phosphate-limited photosynthesis. Interestingly, ectopic expression of OsPHO1;2 greatly increased Pi availability, and thereby, increased photosynthetic rate in leaves during grain filling, contributing to increased yield. This was supported by the effect of foliar Pi application. Moreover, analysis of core rice germplasm resources revealed that higher OsPHO1;2 expression was associated with enhanced photosynthesis and yield potential compared to those with lower expression. These findings reveal that phosphate-limitation of photosynthesis can be relieved via a genetic approach, and the OsPHO1;2 gene can be employed to reinforce crop breeding strategies for achieving higher photosynthetic efficiency.


Asunto(s)
Oryza , Fosfatos , Fotosíntesis , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Fosfatos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Plantas Modificadas Genéticamente
2.
Plant J ; 117(6): 1856-1872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38113327

RESUMEN

The yield of maize (Zea mays L.) crops depends on their ability to intercept sunlight throughout the growing cycle, transform this energy into biomass and allocate it to the kernels. Abiotic stresses affect these eco-physiological determinants, reducing crop grain yield below the potential of each environment. Here we analyse the impact of combined abiotic stresses, such as water restriction and nitrogen deficiency or water restriction and elevated temperatures. Crop yield depends on the product of kernel yield per plant and the number of plants per unit soil area, but increasing plant population density imposes a crowding stress that reduces yield per plant, even within the range that maximises crop yield per unit soil area. Therefore, we also analyse the impact of abiotic stresses under different plant densities. We show that the magnitude of the detrimental effects of two combined stresses on field-grown plants can be lower, similar or higher than the sum of the individual stresses. These patterns depend on the timing and intensity of each one of the combined stresses and on the effects of one of the stresses on the status of the resource whose limitation causes the other. The analysis of the eco-physiological determinants of crop yield is useful to guide and prioritise the rapidly progressing studies aimed at understanding the molecular mechanisms underlying plant responses to combined stresses.


Asunto(s)
Productos Agrícolas , Zea mays , Zea mays/genética , Suelo , Grano Comestible , Agua
3.
Plant J ; 118(4): 1071-1085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294345

RESUMEN

Hybrid breeding is a promising strategy to quickly improve wheat yield and stability. Due to the usefulness of the Rht 'Green Revolution' dwarfing alleles, it is important to gain a better understanding of their impact on traits related to hybrid development. Traits associated with cross-pollination efficiency were studied using Near Isogenic Lines carrying the different sets of alleles in Rht genes: Rht1 (semi-dwarf), Rht2 (semi-dwarf), Rht1 + 2 (dwarf), Rht3 (extreme dwarf), Rht2 + 3 (extreme dwarf), and rht (tall) during four growing seasons. Results showed that the extreme dwarfing alleles Rht2 + 3, Rht3, and Rht1 + 2 presented the greatest effects in all the traits analyzed. Plant height showed reductions up to 64% (Rht2 + 3) compared to rht. Decreases up to 20.2% in anther length and 33% in filament length (Rht2 + 3) were observed. Anthers extrusion decreased from 40% (rht) to 20% (Rht1 and Rht2), 11% (Rht3), 8.3% (Rht1 + 2), and 6.5% (Rht2 + 3). Positive correlations were detected between plant height and anther extrusion, anther, and anther filament lengths, suggesting the negative effect of dwarfing alleles. Moreover, the magnitude of these negative impacts depends on the combination of the alleles: Rht2 + 3 > Rht3/Rht1 + 2 > Rht2/Rht1 > rht (tall). Reductions were consistent across genotypes and environments with interactions due to magnitude effects. Our results indicate that Rht alleles are involved in multiple traits of interest for hybrid wheat production and the need to select alternative sources for reduced height/lodging resistance for hybrid breeding programs.


Asunto(s)
Alelos , Flores , Polinización , Triticum , Triticum/genética , Triticum/fisiología , Triticum/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento/métodos , Fenotipo , Genes de Plantas/genética
4.
Plant J ; 119(5): 2402-2422, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990624

RESUMEN

Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.


Asunto(s)
Aceite de Maíz , Ácidos Grasos , Zea mays , Zea mays/genética , Zea mays/metabolismo , Aceite de Maíz/metabolismo , Aceite de Maíz/genética , Ácidos Grasos/metabolismo , Genómica/métodos , Vitamina E/metabolismo , Ácido Oléico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/química , Ácido Palmítico/metabolismo , Provitaminas/metabolismo , Alelos , Fitomejoramiento/métodos , Repeticiones de Microsatélite/genética
5.
Proc Natl Acad Sci U S A ; 119(50): e2210338119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472959

RESUMEN

Salt stress impairs nutrient metabolism in plant cells, leading to growth and yield penalties. However, the mechanism by which plants alter their nutrient metabolism processes in response to salt stress remains elusive. In this study, we identified and characterized the rice (Oryza sativa) rice salt tolerant 1 (rst1) mutant, which displayed improved salt tolerance and grain yield. Map-based cloning revealed that the gene RST1 encoded an auxin response factor (OsARF18). Molecular analyses showed that RST1 directly repressed the expression of the gene encoding asparagine synthetase 1 (OsAS1). Loss of RST1 function increased the expression of OsAS1 and improved nitrogen (N) utilization by promoting asparagine production and avoiding excess ammonium (NH4+) accumulation. RST1 was undergoing directional selection during domestication. The superior haplotype RST1Hap III decreased its transcriptional repression activity and contributed to salt tolerance and grain weight. Together, our findings unravel a synergistic regulator of growth and salt tolerance associated with N metabolism and provide a new strategy for the development of tolerant cultivars.


Asunto(s)
Aspartatoamoníaco Ligasa , Oryza , Tolerancia a la Sal/genética , Oryza/genética , Aspartatoamoníaco Ligasa/genética , Expresión Génica
6.
Plant Mol Biol ; 114(4): 73, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874648

RESUMEN

Functional genomics through transgenesis has provided faster and more reliable methods for identifying, characterizing, and utilizing genes or quantitative trait loci linked to agronomic traits to target yield. The present study explored the role of Big Grain1 (BG1) gene of rice (Oryza sativa L.) in yield improvement of crop plants. We aimed to identify the genetic variation of OsBG1 in various indica rice cultivars by studying the allelic polymorphism of the gene, while also investigating the gene's potential to increase crop yield through the transgenic approach. Our study reports the presence of an extra 393 bp sequence having two 6 bp enhancer elements in the 3' regulatory sequence of OsBG1 in the large-grain cultivar IR64 but not in the small-grain cultivar Badshahbhog. A single copy of the OsBG1 gene in both the cultivars and a 4.1-fold higher expression of OsBG1 in IR64 than in Badshahbhog imply that the grain size is positively correlated with the level of OsBG1 expression in rice. The ectopic expression of OsBG1 under the endosperm-specific glutelin C promoter in Badshahbhog enhanced the flag leaf length, panicle weight, and panicle length by an average of 33.2%, 33.7%, and 30.5%, respectively. The length of anthers, spikelet fertility, and grain yield per plant increased in transgenic rice lines by an average of 27.5%, 8.3%, and 54.4%, respectively. Heterologous expression of OsBG1 under the constitutive 2xCaMV35S promoter improved the number of seed pods per plant and seed yield per plant in transgenic tobacco lines by an average of 2.2-fold and 2.6-fold, respectively. Improving crop yield is crucial to ensure food security and socio-economic stability, and identifying suitable genetic factor is the essential step towards this endeavor. Our findings suggest that the OsBG1 gene is a promising candidate for improving the grain yield of monocot and dicot plant systems by molecular breeding and genetic engineering.


Asunto(s)
Grano Comestible , Regulación de la Expresión Génica de las Plantas , Nicotiana , Oryza , Proteínas de Plantas , Plantas Modificadas Genéticamente , Oryza/genética , Oryza/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Semillas/genética , Semillas/crecimiento & desarrollo
7.
BMC Plant Biol ; 24(1): 871, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294608

RESUMEN

BACKGROUND: Genetic improvement for Striga hermonthica (Sh) and S. asiatica (Sa) resistance is the most economical and effective control method to enhance the productivity of maize and other major cereal crops. Hence, identification of quantitative trait loci (QTL) associated with Striga resistance and economic traits will guide the pace and precision of resistance breeding in maize. The objective of this study was to undertake a genome-wide association analysis of grain yield and Sh and Sa resistance among tropical and sub-tropical maize populations to identify putative genetic markers and genes for resistance breeding. 126 maize genotypes were evaluated under controlled environment conditions using artificial infestation of Sh and Sa. The test genotypes were profiled for grain yield (GY), Striga emergence counts at 8 (SEC8) and 10 (SEC10) weeks after planting, and Striga damage rate scores at 8 (SDR8) and 10 (SDR10) weeks after planting. Population structure analysis and genome-wide association mapping were undertaken based on 16,000 single nucleotide polymorphism (SNP) markers. RESULTS: A linkage disequilibrium (LD) analysis in 798,675 marker pairs revealed that 21.52% of pairs were in significant linkage (P < 0.001). Across the chromosomes, the LD between SNPs decayed below a critical level (r2 = 0.1) at a map distance of 0.19 Mbp. The genome-wide association study identified 50 significant loci associated with Sh resistance and 22 significant loci linked to Sa resistance, corresponding to 39 and 19 candidate genes, respectively. CONCLUSION: The study found non-significant QTL associated with dual resistance to the two examined Striga species Some of the detected genes reportedly conditioned insect and pathogen resistance, plant cell development, variable senescence, and pollen fertility. The markers detected in the present study for Sa resistance were reported for the first time. The gene Zm00001eb219710 was pleiotropic, and conditioned GY and SEC10, while Zm00001eb165170 affected SDR8 and SDR10, and Zm00001eb112030 conditioned SDR8 and SDR10 associated with Sh resistance. The candidate genes may facilitate simultaneous selection for Sh and Sa resistance and grain yield in maize after further validation and introgression in breeding pipelines. Overall, we recommend breeding maize specifically for resistance to each Striga species using germplasm adapted to the endemic region of each parasite.


Asunto(s)
Grano Comestible , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Striga , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/parasitología , Striga/fisiología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Resistencia a la Enfermedad/genética , Genotipo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Clima Tropical , Marcadores Genéticos
8.
BMC Plant Biol ; 24(1): 233, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561647

RESUMEN

BACKGROUND: The study focuses on the global challenge of drought stress, which significantly impedes wheat production, a cornerstone of global food security. Drought stress disrupts cellular and physiological processes in wheat, leading to substantial yield losses, especially in arid and semi-arid regions. The research investigates the use of Spirulina platensis aqueous extract (SPAE) as a biostimulant to enhance the drought resistance of two Egyptian wheat cultivars, Sakha 95 (drought-tolerant) and Shandawel 1 (drought-sensitive). Each cultivar's grains were divided into four treatments: Cont, DS, SPAE-Cont, and SPAE + DS. Cont and DS grains were presoaked in distilled water for 18 h while SPAE-Cont and SPAE + DS were presoaked in 10% SPAE, and then all treatments were cultivated for 96 days in a semi-field experiment. During the heading stage (45 days: 66 days), two drought treatments, DS and SPAE + DS, were not irrigated. In contrast, the Cont and SPAE-Cont treatments were irrigated during the entire experiment period. At the end of the heading stage, agronomy, pigment fractions, gas exchange, and carbohydrate content parameters of the flag leaf were assessed. Also, at the harvest stage, yield attributes and biochemical aspects of yielded grains (total carbohydrates and proteins) were evaluated. RESULTS: The study demonstrated that SPAE treatments significantly enhanced the growth vigor, photosynthetic rate, and yield components of both wheat cultivars under standard and drought conditions. Specifically, SPAE treatments increased photosynthetic rate by up to 53.4%, number of spikes by 76.5%, and economic yield by 190% for the control and 153% for the drought-stressed cultivars pre-soaked in SPAE. Leaf agronomy, pigment fractions, gas exchange parameters, and carbohydrate content were positively influenced by SPAE treatments, suggesting their effectiveness in mitigating drought adverse effects, and improving wheat crop performance. CONCLUSION: The application of S. platensis aqueous extract appears to ameliorate the adverse effects of drought stress on wheat, enhancing the growth vigor, metabolism, and productivity of the cultivars studied. This indicates the potential of SPAE as an eco-friendly biostimulant for improving crop resilience, nutrition, and yield under various environmental challenges, thus contributing to global food security.


Asunto(s)
Sequías , Spirulina , Triticum , Carbohidratos , Grano Comestible/metabolismo , Triticum/metabolismo , Agua/metabolismo
9.
BMC Plant Biol ; 24(1): 525, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858659

RESUMEN

Common bean provides diet rich in vitamins, fiber, minerals, and protein, which could contribute into food security of needy populations in many countries. Developing genotypes that associate favorable agronomic and grain quality traits in the common bean crop could increase the chances of adopting new cultivars black bean. In this context, the present study aimed at selection of superior black bean lines using multi-variate indexes, Smith-Hazel-index, and genotype by yield*trait biplot analysis. These trials were conducted in Campos dos Goytacazes - RJ, in 2020 and 2021. The experimental design used was randomized blocks, with 28 treatments and three replications. The experimental unit consisted of four rows 4.0 m long, spaced at 0.50 m apart, with a sowing density of 15 seeds per meter. The two central rows were used for the evaluations. The selection of superior genotypes was conducted using the multiple trait stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP), Smith-Hazel index, and Genotype by Yield*Trait Biplot (GYT). The multivariate indexes efficiently selected the best black bean genotypes, presenting desirable selection gains for most traits. The use of multivariate indexes and GYT enable the selection of early genotypes with higher grain yields. These lines G9, G13, G17, G23, and G27 were selected based on their performance for multiple traits closest to the ideotype and could be recommended as new varieties.


Asunto(s)
Genotipo , Phaseolus , Phaseolus/genética , Fitomejoramiento/métodos , Selección Genética , Productos Agrícolas/genética , Fenotipo
10.
BMC Plant Biol ; 24(1): 321, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654179

RESUMEN

BACKGROUND: pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT: This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION: These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Regiones Promotoras Genéticas , Resistencia a la Sequía , Nitrógeno/metabolismo , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
11.
Planta ; 259(5): 101, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536474

RESUMEN

MAIN CONCLUSION: Axillary meristems (AMs) located in the leaf axils determine the number of shoots or tillers eventually formed, thus contributing significantly to the plant architecture and crop yields. The study of AM initiation is unavoidable and beneficial for crop productivity. Shoot branching is an undoubted determinant of plant architecture and thus greatly impacts crop yield due to the panicle-bearing traits of tillers. The emergence of the AM is essential for the incipient bud formation, and then the bud is dormant or outgrowth immediately to form a branch or tiller. While numerous reviews have focused on plant branching and tillering development networks, fewer specifically address AM initiation and its regulatory mechanisms. This review synthesizes the significant advancements in the genetic and hormonal factors governing AM initiation, with a primary focus on studies conducted in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.). In particular, by elaborating on critical genes like LATERAL SUPPRESSOR (LAS), which specifically regulates AM initiation and the networks in which they are involved, we attempt to unify the cascades through which they are positioned. We concentrate on clarifying the precise mutual regulation between shoot apical meristem (SAM) and AM-related factors. Additionally, we examine challenges in elucidating AM formation mechanisms alongside opportunities provided by emerging omics approaches to identify AM-specific genes. By expanding our comprehension of the genetic and hormonal regulation of AM development, we can develop strategies to optimize crop production and address global food challenges effectively.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta , Proteínas de Arabidopsis/metabolismo
12.
Planta ; 259(6): 127, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637411

RESUMEN

MAIN CONCLUSION: Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.


Asunto(s)
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Triticum , Nitrógeno/metabolismo , Fertilizantes , Arabidopsis/metabolismo
13.
Plant Biotechnol J ; 22(5): 1417-1432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193234

RESUMEN

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions. JAUP1 regulates a self-perpetuating feed-forward loop to activate the expression of genes involved in JA biosynthesis and signalling that confers tolerance to abiotic stresses and regulates auxin-dependent root development. Ectopic expression of JAUP1 alleviates abscisic acid- and salt-mediated suppression of lateral root (LR) growth. JAUP1 is primarily expressed in the root cap and epidermal cells (EPCs) that protect the meristematic stem cells and emerging LRs. Wound-activated JA/JAUP1 signalling promotes crosstalk between the root cap of LR and parental root EPCs, as well as induces cell wall remodelling in EPCs overlaying the emerging LR, thereby facilitating LR emergence even under ABA-suppressive conditions. Elevated expression of JAUP1 in transgenic rice or natural rice accessions enhances abiotic stress tolerance and reduces grain yield loss under a limited water supply. We reveal a hitherto unappreciated role for wound-induced JA in LR development under abiotic stress and suggest that JAUP1 can be used in biotechnology and as a molecular marker for breeding rice adapted to extreme environmental challenges and for the conservation of water resources.


Asunto(s)
Ciclopentanos , Oryza , Oxilipinas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
14.
Plant Biotechnol J ; 22(2): 316-329, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786281

RESUMEN

Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.


Asunto(s)
Arabidopsis , Nitrógeno , Nitrógeno/metabolismo , Nitratos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Arabidopsis/genética , Raíces de Plantas/metabolismo
15.
New Phytol ; 241(3): 1250-1265, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009305

RESUMEN

Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.


Asunto(s)
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Grano Comestible , Glucosa/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo
16.
Plant Cell Environ ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051263

RESUMEN

Pollen fertility is a primary regulator of grain yield and is highly susceptible to cold and other environmental stress. We revealed the roles of rice cell wall invertase gene PWIN1 in pollen development and chilling tolerance. We uncovered its preferential expression in microspores and bicellular pollen and identified its knock-down and knock-out mutants. pwin1 mutants produced a higher proportion of abnormal pollen than wild-type plants. The contents of sucrose, glucose, and fructose were increased, while ATP content and primary metabolism activity were reduced in the mutant pollen. Furthermore, the loss of function of PWIN1 coincided with an increase in SnRK1 activity and a decrease in TOR activity. Under chilling conditions, pwin1 mutants displayed significantly reduced pollen viability and seed-setting rate, while overexpressing PWIN1 notably increased pollen viability and seed-setting rate as compared with the wild-type, indicating that PWIN1 is essential for rice pollen development and grain yield under cold stress. This study provides insights into the molecular mechanisms underlying rice pollen fertility during chilling stress, and a new module to improve chilling tolerance of rice at the booting stage by molecular design.

17.
Plant Cell Environ ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254042

RESUMEN

Soybean (Glycine max [L.] Merr.) serves as a major source of protein and oil for humans and animals. Shoot architecture, the spatial arrangement of a plant's above-ground organs, strongly affects crop yield and is therefore a critical agronomic trait. Unlike wheat and rice crops that have greatly benefitted from the Green Revolution, soybean yield has not changed significantly in the past six decades owing to its unique shoot architecture. Soybean is a pod-bearing crop with pods adhered to the nodes, and variation in shoot architecture traits, such as plant height, node number, branch number and number of seeds per pod, directly affects the number of pods and seeds per plant, thereby determining yield. In this review, we summarize the relationship between soybean yield and these major components of shoot architecture. We also describe the latest advances in identifying the genes and molecular mechanisms underlying soybean shoot architecture and discuss possible directions and approaches for breeding new soybean varieties with ideal shoot architecture and improved yield.

18.
J Exp Bot ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392917

RESUMEN

Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids, such as lysine. The activity of dihydrodipicolinate synthase (DHDPS) enzyme is crucial for lysine production in higher plants, but it is highly regulated through a feedback inhibition by its end product lysine, leading to its limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make it lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29 % higher lysine and 15 % higher protein accumulation in rice grains than the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. Further, the transgenic plants exhibited enhanced stress tolerance along with better antioxidant levels, improved photosynthesis, and higher grain yield compared to wild type plants. We have shown for the first time in rice that protein engineering of DHDPS can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.

19.
J Exp Bot ; 75(1): 17-35, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935244

RESUMEN

One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.


Asunto(s)
Hordeum , Inflorescencia , Grano Comestible/genética , Grano Comestible/metabolismo , Poaceae/metabolismo , Hordeum/genética , Triticum/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Meristema , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
20.
J Exp Bot ; 75(3): 708-720, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37933683

RESUMEN

Tillering, also known as shoot branching, is a fundamental trait for cereal crops such as rice to produce sufficient panicle numbers. Effective tillering that guarantees successful panicle production is essential for achieving high crop yields. Recent advances in molecular biology have revealed the mechanisms underlying rice tillering; however, in rice breeding and cultivation, there remain limited genes or alleles suitable for effective tillering and high yields. A recently identified quantitative trait locus (QTL) called MORE PANICLES 3 (MP3) has been cloned as a single gene and shown to promote tillering and to moderately increase panicle number. This gene is an ortholog of the maize domestication gene TB1, and it has the potential to increase grain yield under ongoing climate change and in nutrient-poor environments. This review reconsiders the potential and importance of tillering for sustainable food production. Thus, I provide an overview of rice tiller development and the currently understood molecular mechanisms that underly it, focusing primarily on the biosynthesis and signaling of strigolactones, effective QTLs, and the importance of MP3 (TB1). The possible future benefits in using promising QTLs such as MP3 to explore agronomic solutions under ongoing climate change and in nutrient-poor environments are also highlighted.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Grano Comestible/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA