Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Foodborne Pathog Dis ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358321

RESUMEN

The plasmid-mediated tet(X4) gene has exhibited a high-level resistance to tigecycline (TGC), which has raised concerns globally regarding antibiotic resistance. Although the widespread tet(X4) has been found widely in Escherichia coli, it is scarcely found in other Enterobacteriaceae. This study aimed to characterize a ST469 Salmonella enterica serovar Rissen (S. Rissen) isolate harboring tet(X4) from pork, which was identified and characterized via antimicrobial susceptibility testing, conjugation assays, plasmid curing testing, whole-genome sequencing, and bioinformatic analysis. Ten ST469 S. Rissen isolates of 223 Salmonella spp. isolates were isolated from food samples in China during 2021-2023. One of 10 S. Rissen isolates, SM2301, carrying tet(X4) conferred high-level resistance to TGC (minimum inhibitory concentration > 8 µg/mL). The tet(X4) could be conjugated into different recipients, including E. coli, S. enteritidis, and K. pneumoniae isolates. Plasmid curing confirmed that tet(X4) was plasmid-mediated. Genetic analysis revealed that the tet(X4) in the SM2301 isolate was located in the IncFIA(HI1)-IncHI1A-IncHI1B(R27) hybrid plasmid, and the structure of tet(X4) was abh-tet(X4)-ISCR2. To the best of our knowledge, this is the first report of a tet(X4)-positive food-derived S. Rissen isolate. The extending bacterial species of tet(X4)-bearing plasmids suggested the increasing transmission risk of the mobile TGC resistance gene tet(X4) beyond E. coli. This study highlights the emerging and evolution risk of novel resistance genes across various bacterial species. Therefore, further surveillance is warranted to monitor the prevalence of tet(X4) in Salmonella spp. and other bacterial species.

2.
Antimicrob Agents Chemother ; 67(7): e0003023, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37310284

RESUMEN

The emergence of carbapenem-resistant, hypervirulent Klebsiella pneumoniae is a new threat to health care. We studied the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae isolates in Qatar using whole-genome sequence data. We also characterized the prevalence and genetic basis of hypervirulent phenotypes and established the virulence potential using a Galleria mellonella model. Of 100 Klebsiella isolates studied, NDM and OXA-48 were the most common carbapenemases. Core genome single-nucleotide polymorphism (SNP) analysis indicated the presence of diverse sequence types and clonal lineages; isolates belonging to Klebsiella quasipneumoniae subsp. quasipneumoniae sequence type 196 (ST196) and ST1416 may be disseminated among several health care centers. Ten K. pneumoniae isolates carried rmpA and/or truncated rmpA2, and 2 isolates belonged to KL2, indicating low prevalence of classical hypervirulent isolates. Isolates carrying both carbapenem resistance and hypervirulence genes were confined mainly to ST231 and ST383 isolates. One ST383 isolate was further investigated by MinION sequencing, and the assembled genome indicated that blaNDM was located on an IncHI1B-type plasmid (pFQ61_ST383_NDM-5) which coharbored several virulence factors, including the regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD and iutA), likely resulting from recombination events. Comparative genomics indicated that this hybrid plasmid may be present in two additional Qatari ST383 isolates. Carbapenem-resistant, hypervirulent K. pneumoniae ST383 isolates pose an emerging threat to global health due to their simultaneous hypervirulence and multidrug resistance.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Carbapenémicos/farmacología , Qatar/epidemiología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Klebsiella , beta-Lactamasas/genética , Plásmidos/genética , Genómica , Antibacterianos/farmacología
3.
Antimicrob Agents Chemother ; 67(1): e0135422, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36602346

RESUMEN

The carbapenem-resistant Klebsiella pneumoniae (CRKP) strain GX34 was recovered from the respiratory tract of an elderly male with severe pneumonia, and only susceptible to amikacin, tigecycline, and colistin. Complete genome suggested that it belonged to K51-ST16 and harbored plasmid-encoded NDM-4 and OXA-181, located on IncFIB plasmid GX34p1_NDM-4 and ColKP3/IncX3 plasmid GX34p4_OXA-181, respectively. A series of transconjugants generated in the plasmid conjugation assays, including Escherichia coli J53-N1 (harboring a self-transmissible and blaNDM-1-producing plasmid Eco-N-1-p), J53-N2 (harboring a blaNDM-4-producing plasmid and a helper plasmid GX34p5), and J53-O (harboring a blaOXA-181-producing plasmid), could be stably inherited after 10 days of serial passage and no significant biological fitness costs were detected. Furthermore, we first reported the blaNDM-1 gene, derived from blaNDM-4 mutation (460C>A) under meropenem pressure, could be in vitro transferred into a self-conjugative, recombined plasmid Eco-N-1-p of J53-N1. Eco-N-1-p was mainly recombined by GX34p4_OXA-181 (40,449 bp, 75.16%) and GX34p1_NDM-4 (8,553 bp, 15.89%), in which IS26 and IS5-like probably played a major role. Eco-N-1-p could be transferred into the conjugation recipient K. pneumoniae KP54 and make the latter sacrifice fitness. The retention rates of blaNDM-1 remained high stability (>80% after 200 generations). The comparative genomic analysis of GX34 and those carrying blaNDM-4 or blaOXA-181 genes retrieved from the NCBI RefSeq database showed all blaNDM-4 (26/26, 100.00%) and blaOXA-181 (13/13, 100.00%) were surrounded by IS26. The immediate environment of blaNDM-4 and blaOXA-181 in GX34 and some retrieved strains shared identical features, hinting at their possible dissemination. Effective measures should be taken to monitor the spread of this clone.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Masculino , Anciano , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Elementos Transponibles de ADN , Antibacterianos/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Escherichia coli/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/genética
4.
Foodborne Pathog Dis ; 19(4): 293-296, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35148491

RESUMEN

A Salmonella Enteritidis clinical strain SAL045 isolated from an infant patient in China was subjected to whole genome sequencing. Strain SAL045 is resistant to 12 antibiotics tested including ampicillin and polymyxin E. A novel hybrid plasmid pS045A harboring 22 antibiotic resistance genes and 10 virulence genes was characterized. There were no sequences in the NCBI nucleotide database that completely covered the pS045A sequence. Sequence analysis indicated that pS045A was formed by IS26-mediated recombination of two plasmids. Plasmid pS045A was transferred to E. coli EC600 recipient strain at a frequency of 1.76 × 10-6 per donor cell. Plasmid pS045A is a novel conjugative plasmid and might cause dissemination of drug-resistance and virulence genes within enterobacterial species.


Asunto(s)
Escherichia coli , Salmonella enteritidis , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Salmonella enteritidis/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-33722891

RESUMEN

Recent emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) coharboring blaKPC-2 and pLVPK-like virulence plasmids represented a novel clinical challenge. In the present study, we characterized a blaKPC-2 and virulence hybrid plasmid, designated pCRHV-C2244, from a clinical ST11-K64 CRKP strain. pCRHV-C2244 was non-self-transmissible due to incomplete conjugative elements but mobilizable together with a conjugative helper. Enhanced virulence and stable maintenance without significant fitness loss in its original host were confirmed in vitro and in vivo.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Plásmidos/genética , Factores de Virulencia/genética , beta-Lactamasas/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-31481444

RESUMEN

We reported the complete nucleotide sequence of a tet(X4)-carrying plasmid, pSTB20-1T, from a tigecycline-resistant Escherichia coli isolate in China. Sequence analysis indicated that pSTB20-1T contains a hybrid plasmid backbone and a tet(X4)-containing multidrug resistance region, likely originated through recombination of multiple plasmids. tet(X4) was flanked by two ISCR2, which may be responsible for tet(X4) mobilization. The occurrence and transmission of this novel hybrid plasmid may exacerbate the spread of the clinically significant tet(X4) gene.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/genética , Genes Bacterianos/genética , Plásmidos/genética , Tigeciclina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Análisis de Secuencia de ADN
8.
J Glob Antimicrob Resist ; 38: 35-41, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38763331

RESUMEN

OBJECTIVES: Klebsiella aerogenes is a largely understudied opportunistic pathogen that can cause sepsis and lead to high mortality rates. In this study, we reported the occurrence of carbapenem-resistant blaOXA-181-carrying Klebsiella aerogenes from swine in China and elucidate their genomic characteristics. METHODS: A total of 126 samples, including 109 swine fecal swabs, 14 environmental samples, and three feed samples were collected from a pig farm in China. The samples were enriched with LB broth culture and then inoculated into MacConkey agar plates for bacterial isolation. After PCR detection of carbapenemases genes, the blaOXA-181-carrying isolates were subjected to antimicrobial susceptibility testing, and whole-genome sequence analysis. RESULTS: Four Klebsiella aerogenes isolates carrying the blaOXA-181 gene were obtained from swine faecal samples. All the 4 strains were belonged to ST438. The blaOXA-181 genes were located in IncX3-ColKP3 hybrid plasmids with the core genetic structure of IS26-ΔIS3000-ΔISEcp1-blaOXA-181-ΔlysR-ΔereA-ΔrepA-ISKpn19-tinR-qnrS1-ΔIS2-IS26, which suggests the potential for horizontal transfer and further dissemination of this resistance gene among Enterobacteriaceae and other sources. CONCLUSIONS: This study represents the first instance of OXA-181-producing K. aerogenes being identified from swine faeces in China. It is crucial to maintain continuous monitoring and ongoing attention to the detection of K. aerogenes carrying blaOXA-181 and other resistance genes in pigs.


Asunto(s)
Proteínas Bacterianas , Enterobacter aerogenes , Heces , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , beta-Lactamasas , Animales , Porcinos , China , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Heces/microbiología , Enterobacter aerogenes/genética , Enterobacter aerogenes/aislamiento & purificación , Enterobacter aerogenes/enzimología , Enterobacter aerogenes/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Plásmidos/genética , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/veterinaria , Enfermedades de los Porcinos/microbiología , Carbapenémicos/farmacología
9.
Microbiol Spectr ; 11(1): e0261622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36625668

RESUMEN

Generation of hybrid MDR plasmids accelerated the evolution and transmission of resistance genes. In this study, we characterized a blaKPC-2- and blaIMP-4-coharboring conjugative hybrid plasmid constituted of an IncHI5 plasmid-like region, an IncFII(Yp)/IncFIA plasmid-like region, and a KPN1344 chromosome-like region from a clinical ST852-KL18 Klebsiella quasipneumoniae strain. The blaIMP-4 gene was captured by a novel integron In1965, and the blaKPC-2 gene was located on a new non-Tn4401 group I NTEKPC element. Both blaKPC-2- and blaIMP-4-containing genetic architectures were distinguished from classical structures, highlighting the constant evolution of these genetic elements. IMPORTANCE The emergence of carbapenem-resistant Enterobacterales (CRE) that coexpress serine- and metallo-carbapenemases is a severe threat to the efficacy of ceftazidime-avibactam (CZA), which has been proven to be extremely effective against KPC-producing Enterobacterales strains. Our study described the cooccurrence of KPC-2, a serine ß-lactamase, and IMP-4, a metallo-ß-lactamase (MBL), on a conjugative hybrid plasmid from a clinical carbapenem-resistant K. quasipneumoniae strain, and it revealed an alternative route for IncHI5 plasmid to evolve by recombining with other plasmids to form a hybrid plasmid. Moreover, this hybrid plasmid can be transferred into other Klebsiella species and stably persist during passage. The propagation of two important carbapenemase genes with a new genetic background using well-evolved plasmids in the clinical setting promotes the emergence of superbugs that require careful monitoring.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Klebsiella/genética , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Plásmidos/genética , Carbapenémicos/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
10.
mLife ; 2(3): 317-327, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38817808

RESUMEN

The co-occurrence of plasmid-mediated multidrug resistance and hypervirulence in epidemic carbapenem-resistant Klebsiella pneumoniae has emerged as a global public health issue. In this study, an ST23 carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) strain VH1-2 was identified from cucumber in China and harbored a novel hybrid plasmid pVH1-2-VIR. The plasmid pVH1-2-VIR carrying both virulence and multidrug-resistance (MDR) genes was likely generated through the recombination of a virulence plasmid and an IncFIIK conjugative MDR plasmid in clinical ST23 18622 isolated from a sputum sample. The plasmid pVH1-2-VIR exhibited the capacity for transfer to the clinical ST11 carbapenem-resistant K. pneumoniae (CRKP) strain via conjugation assay. Acquisition of pVH1-2-VIR plasmid directly converted a CRKP into CR-HvKP strain characterized by hypermucoviscosity, heightened virulence for Galleria mellonella larvae, and increased colonization ability in the mouse intestine. The emergence of such a hybrid plasmid may expedite the spread of CR-HvKP strains, posing a significant risk to human health.

11.
Infect Drug Resist ; 16: 7621-7628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107435

RESUMEN

Purpose: We aimed to characterize a novel blaNDM-5 and blaKPC-2 co-carrying hybrid plasmid from a clinical carbapenem-resistant Klebsiella pneumoniae (CRKP) strain. Methods: Antimicrobial susceptibility was determined by the broth microdilution method. Plasmid size and localization were estimated using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Plasmid transfer ability was evaluated by conjugation experiments. Whole genome sequencing (WGS) was performed using Illumina NovaSeq6000 and Oxford Nanopore MinION platforms. Genomic characteristics were analyzed using bioinformatics methods. Results: Strain ZY27320 was a multidrug-resistant (MDR) clinical ST11 K. pneumoniae strain that confers high-level resistance to carbapenems (meropenem, MIC 128 mg/L; imipenem, MIC 64 mg/L) and ceftazidime/avibactam (MIC >128/4 mg/L). Both S1-PFGE-Southern blotting and whole genome sequencing revealed that the carbapenemase genes blaKPC-2 and blaNDM-5 were carried by the same IncFIIpHN7A8:IncR:IncN hybrid plasmid (pKPC2_NDM5). Conjugation experiments indicated that pKPC2_NDM5 was a non-conjugative plasmid. Conclusion: This is the first report of a hybrid plasmid carrying both carbapenemase genes blaNDM-5 and blaKPC-2 in a clinical K. pneumoniae ST11 isolate that confers resistance to both ceftazidime/avibactam and carbapenems, thereby presenting a serious threat to treatment in clinical practice.

12.
Microorganisms ; 11(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36838424

RESUMEN

BACKGROUND: Klebsiella pneumoniae, a member of the ESKAPE group of bacterial pathogens, has developed multi-antimicrobial resistance (AMR), including resistance to carbapenems, which has increased alarmingly due to the acquisition of carbapenemase genes located on specific plasmids. METHODS: Four clinical K. pneumoniae isolates were collected from four patients of a neuro-intensive care unit in Moscow, Russia, during the point prevalence survey. The AMR phenotype was estimated using the Vitec-2 instrument, and whole genome sequencing (WGS) was done using Illumina and Nanopore technologies. RESULTS: All strains were resistant to beta-lactams, nitrofurans, fluoroquinolones, sulfonamides, aminoglycosides, and tetracyclines. WGS analysis revealed that all strains were closely related to K. pneumoniae ST39, capsular type K-23, with 99.99% chromosome identity. The novelty of the study is the description of the strains carrying simultaneously three large plasmids of the IncHI1B, IncC, and IncFIB groups carrying the carbapenemase genes of three types, blaOXA-48, blaNDM-1, and blaKPC-2, respectively. The first of them, highly identical in all strains, was a hybrid plasmid that combined two regions of the resistance genes (blaOXA-48 and blaTEM-1 + blaCTX-M-15 + blaOXA-1 + catB + qnrS1 + int1) and a region of the virulence genes (iucABCD, iutA, terC, and rmpA2::IS110). CONCLUSION: The spread of K. pneumoniae strains carrying multiple plasmids conferring resistance even to last-resort antibiotics is of great clinical concern.

13.
Infect Drug Resist ; 16: 4073-4081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388189

RESUMEN

Background: Emergence of blaKPC and blaNDM co-harboring Klebsiella pneumoniae has escalated the threat of Carbapenem-resistant Klebsiella pneumoniae (CRKP) to healthcare. It remains unknown the prevalence and molecular characteristics of CRKP co-producing KPC and NDMs carbapenemases in Henan. Methods and Results: Twenty-seven CRKP strains isolated from different times were selected randomly in affiliated cancer hospital of Zhengzhou University from January 2019 to January 2021, among which one KPC-2 and NDM-5 positive CRKP named K9 was isolated from an abdominal pus sample of a 63-year-old male patient with leukemia. Sequencing of K9 determined that K9 belonged to ST11-KL47, which is resistant to antibiotics such as meropenem, ceftazidime-avibactam and tetracycline. K9 carried two different plasmids that contained blaNDM-5 and blaKPC-2. Both plasmids were shown to be novel hybrid plasmids and IS26 played an important role in generation of two plasmids. Gene blaKPC-2 was flanked by the NTEKPC-Ib-like genetic structure (IS26-ΔTn3-ISKpn8-blaKPC-2-ISKpn6-IS26) and was located on a conjugative IncFII/R/N type hybrid plasmid. Conclusion: The resistance gene blaNDM-5 located on a region organized as IS26-blaNDM-5-ble-trpF-dsbD-ISCR1-sul1-aadA2-dfrA12-IntI1-IS26 was carried by a phage-plasmid. We described a clinical CRKP co-producing KPC-2 and NDM-5 and emphasized an urgent need to control their further spread.

14.
Front Microbiol ; 14: 1239538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664119

RESUMEN

Introduction: The increase in clinical Enterobacteriaceae with dual carbapenemase has become a serious healthcare concern. It is essential to characterize the transferability and potential dissemination of blaKPC-2- and blaNDM-1-coharboring carbapenem-resistant Citrobacter freundii (CRCF). Methods: Four blaKPC-2- and blaNDM-1-coharboring CRCF strains were collected from our surveillance of the prevalence of carbapenem-resistant Enterobacteriaceae. The isolates were assessed using species identification, antimicrobial susceptibility testing, conjugation assays, whole-genome sequencing, plasmid stability, and fitness costs. Clonality, genome, plasmidome, and phylogeny were analyzed to reveal potential dissemination. Results: Three ST523 blaKPC-2- and blaNDM-1-coharboring CRCF strains, collected from the same hospital within 1 month, exhibited high homology (both identity and coverage >99%), implying clonal dissemination and a small-scale outbreak. Moreover, the blaKPC-2 and blaNDM-1 genes were coharbored on an IncR plasmid, probably generated by a blaKPC-2-harboring plasmid acquiring blaNDM-1, in these three strains. Importantly, the IncR plasmid may form a transferable hybrid plasmid, mediated by IS6100 via transposition, with another IncFII plasmid included in the same C. freundii strain. Furthermore, the blaKPC-2 and blaNDM-1 of the fourth CRCF strain are located on two different non-transferable plasmids lacking complete transfer elements. Additionally, throughout the course of the 10-day continuous passage, the genetic surroundings of blaNDM-1 in four CRCF strains were gradually excised from their plasmids after the 8th day, whereas they maintained 100% retention for blaKPC-2. Genome and plasmidome analyses revealed that blaKPC-2- or blaNDM-1-harboring C. freundii were divergent, and these plasmids have high homology to plasmids of other Enterobacteriaceae. Conclusion: Clonal dissemination of ST523 blaKPC-2- and blaNDM-1-coharboring CRCF strains was detected, and we first reported blaKPC-2 and blaNDM-1 concomitantly located on one plasmid, which could be transferred with mediation by IS6100 via transposition. Continued surveillance should urgently be implemented.

15.
Int J Antimicrob Agents ; 60(2): 106619, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35718265

RESUMEN

Carbapenems, tigecycline and colistin are three important antimicrobial agents for the treatment of clinical infections caused by multidrug-resistant Enterobacteriaceae. Here we characterised the formation of hybrid plasmids containing mcr-8 and blaNDM-1 or tmexCD1-toprJ1 that could confer resistance to colistin and carbapenems or tigecycline. More specifically, these clinically important genes could be co-transferred through IS26- and ltrA-mediated plasmid fusion to clinical isolates during conjugation under single drug (colistin) selection, following which the recipient strains became carbapenem- or tigecycline-resistant. The transferability and stability of these hybrid multidrug resistance (MDR) plasmids depend on the bacterial host and the presence of antibiotics. Further evolution and adaptation of these hybrid plasmids may facilitate their emergence and spread, which is of great concern for clinical therapy.


Asunto(s)
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacología , Carbapenémicos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Tigeciclina/farmacología , beta-Lactamasas
16.
Front Microbiol ; 13: 1003783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188002

RESUMEN

Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP), a type of Klebsiella pneumoniae (KP) that exhibits hypervirulence and carbapenem resistance phenotypes, can cause severe infections, both hospital- and community-acquired infections. CR-hvKP has brought great challenges to global public health and is associated with significant morbidity and mortality. There are many mechanisms responsible for the evolution of the hypervirulence and carbapenem resistance phenotypes, such as the horizontal transfer of the plasmid carrying the carbapenem resistance gene to hypervirulent Klebsiella pneumoniae (hvKP) or carbapenemase-producing Klebsiella pneumoniae (CRKP) acquiring a hypervirulence plasmid carrying a virulence-encoding gene. Notably, KP can evolve into CR-hvKP by acquiring a hybrid plasmid carrying both the carbapenem resistance and hypervirulence genes. In this review, we summarize the evolutionary mechanisms of resistance and plasmid-borne virulence as well as the prevalence of CR-hvKP.

17.
Front Cell Infect Microbiol ; 12: 875116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573787

RESUMEN

Background: Hypervirulent variants of Klebsiella pneumoniae (HvKp) were typically associated with a broadly antimicrobial susceptible clone of sequence type (ST) 23 at the time of its emergence. Concerningly, HvKp is now also emerging within multidrug-resistant (MDR) clones, including ST11, ST15, and ST147. MDR-HvKp either carry both the virulence and resistance plasmids or carry a large hybrid plasmid coding for both virulence and resistance determinants. Here, we aimed to genetically characterize a collection of MDR-HvKp ST2096 isolates haboring hybrid plasmids carrying both antimicrobial resistance (AMR) and virulence genes. Methods: Nine K. pneumoniae ST2096 isolated over 1 year from the blood sample of hospitalized patients in southern India that were MDR and suspected to be HvKp were selected. All nine isolates were subjected to short-read whole-genome sequencing; a subset (n = 4) was additionally subjected to long-read sequencing to obtain complete genomes for characterization. Mucoviscosity assay was also performed for phenotypic assessment. Results: Among the nine isolates, seven were carbapenem-resistant, two of which carried blaNDM-5 on an IncFII plasmid and five carried blaOXA-232 on a ColKP3 plasmid. The organisms were confirmed as HvKp, with characteristic virulence genes (rmpA2, iutA, and iucABCD) carried on a large (~320 kbp) IncFIB-IncHI1B co-integrate. This hybrid plasmid also carried the aadA2, armA, blaOXA-1, msrE, mphE, sul1, and dfrA14 AMR genes in addition to the heavy-metal resistance genes. The hybrid plasmid showed about 60% similarity to the IncHI1B virulence plasmid of K. pneumoniae SGH10 and ~70% sequence identity with the first identified IncHI1B pNDM-MAR plasmid. Notably, the hybrid plasmid carried its type IV-A3 CRISPR-Cas system which harbored spacer regions against traL of IncF plasmids, thereby preventing their acquisition. Conclusion: The convergence of virulence and AMR is clinically concerning in K. pneumoniae. Our data highlight the role of hybrid plasmids carrying both AMR and virulence genes in K. pneumoniae ST2096, suggesting that MDR-HvKp is not confined to selected clones; we highlight the continued emergence of such genotypes across the species. The convergence is occurring globally amidst several clones and is of great concern to public health.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Humanos , Plásmidos/genética , Virulencia/genética , beta-Lactamasas/genética
18.
mSphere ; 6(3)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011682

RESUMEN

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in Egyptian hospitals has been reported. However, the genetic basis and analysis of the plasmids associated with carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) in Egypt have not been presented. Therefore, we attempted to decipher the plasmid sequences that are responsible for transferring the determinants of carbapenem resistance, particularly blaNDM-1 and blaKPC-2 Out of 34 K. pneumoniae isolates collected from two tertiary hospitals in Egypt, 31 were CRKP. Whole-genome sequencing revealed that our isolates were related to 13 different sequence types (STs). The most prevalent ST was ST101, followed by ST383 and ST11. Among the CRKP isolates, one isolate named EBSI036 has been reassessed by Nanopore sequencing. Genetic environment analysis showed that EBSI036 carried 20 antibiotic resistance genes and was identified as a CR-HvKP strain: it harbored four plasmids, namely, pEBSI036-1-NDM-VIR, pEBSI036-2-KPC, pEBSI036-3, and pEBSI036-4. The two carbapenemase genes blaNDM-1 and blaKPC-2 were located on plasmids pEBSI036-1-NDM-VIR and pEBSI036-2-KPC, respectively. The IncFIB:IncHI1B hybrid plasmid pEBSI036-1-NDM-VIR also carried some virulence factors, including the regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD and iutA). Thus, we set out in this study to analyze in depth the genetic basis of the pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. We report a high-risk clone ST11 KL47 serotype of a CR-HvKP strain isolated from the blood of a 60-year-old hospitalized female patient from the intensive care unit (ICU) in a tertiary care hospital in Egypt, which showed the cohabitation of a novel hybrid plasmid coharboring the blaNDM-1 and virulence genes and a blaKPC-2-carrying plasmid.IMPORTANCE CRKP has been registered in the critical priority tier by the World Health Organization and has become a significant menace to public health. The emergence of CR-HvKP is of great concern in terms of both disease and treatment. In-depth analysis of the carbapenemase-encoding and virulence plasmids may provide insight into ongoing recombination and evolution of virulence and multidrug resistance in K. pneumoniae Thus, this study serves to alert contagious disease clinicians to the presence of hypervirulence in CRKP isolates in Egyptian hospitals.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/patogenicidad , Plásmidos/genética , Factores de Virulencia/genética , beta-Lactamasas/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Egipto , Femenino , Humanos , Lactante , Recién Nacido , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Centros de Atención Terciaria/estadística & datos numéricos , Adulto Joven
19.
Front Microbiol ; 10: 1865, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456779

RESUMEN

The objectives of this study were to investigate the prevalence and fluoroquinolone resistant Salmonella isolated from an integrated broiler chicken supply chain and their molecular characterization. In total, 73 Salmonella isolates were recovered from a broiler chicken supply chain in Shanghai. Salmonella isolates were tested for susceptibility to 11 antimicrobial agents using the broth dilution method and were characterized using pulsed-field gel electrophoresis (PFGE). Then, the Salmonella isolates were examined for mutations in quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE, and were screened for plasmid-mediated quinolone resistance (PMQR) genes. Lastly, we sequenced the plasmids carrying qnrS1 in six Salmonella isolates from three sources (two isolated per source). Among 73 Salmonella isolates, 45 isolates were identified as S. Indiana, 24 were S. Schwarzengrund, 2 were S. Enteritidis, and 2 were S. Stanleyville. In addition, high rates of resistance were detected for nalidixic acid (41.1%) and ciprofloxacin (37.0%), while resistance to other test agents was diverse (2.0-100%). S. Indiana and S. Schwarzengrund isolates from different sources exhibited the same PFGE pattern, suggesting that the Salmonella isolates possessed high potential to spread along the broiler chicken supply chain. gyrA and parC exhibited frequent missense mutations. Moreover, qnrS1 was the most prevalent PMQR gene in the 73 Salmonella isolates, and it was found about a new hybrid plasmid. This study concludes a high prevalence of fluoroquinolone resistant Salmonella in chicken supply chain, threatening the treatment of Salmonella foodborne diseases. In particular, the emergence of a new hybrid plasmid carrying qnrS1 indicates that the recombination of plasmid carrying resistance gene might be a potential risk factor for the prevention and control strategies of drug resistance.

20.
Front Microbiol ; 6: 1547, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793180

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as bla TEM-1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical importance. Such phenomenon is bothersome when the plasmids are transmissible, facilitating the spread of virulence and resistance plasmids among pathogenic bacteria. Notably, certain TA systems are more commonly found in particular ExPEC plasmid types, indicating the possible relationships between certain TA systems and ExPEC pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA