Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 17(3)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934619

RESUMEN

Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.


Asunto(s)
Organismos Acuáticos/microbiología , Infecciones Bacterianas/prevención & control , Bacilos Gramnegativos Anaerobios Facultativos/fisiología , Percepción de Quorum/efectos de los fármacos , Agua de Mar/microbiología , Animales , Antibacterianos/farmacología , Acuicultura , Biopelículas/efectos de los fármacos , Bacilos Gramnegativos Anaerobios Facultativos/efectos de los fármacos , Percepción de Quorum/fisiología , Salinidad , Humedales
2.
Front Microbiol ; 9: 1377, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977233

RESUMEN

We studied the bacterial community in Rambla Salada in three different sampling sites and in three different seasons and the effect of salinity, oxygen, and pH. All sites samples had high diversity and richness (Rr > 30). The diversity indexes and the analysis of dendrograms obtained by DGGE fingerprint after applying Pearson's and Dice's coefficient showed a strong influence of sampling season. The Pareto-Lorenz (PL) curves and Fo analysis indicated that the microbial communities were balanced and despite the changing environmental conditions, they can preserve their functionality. The main phyla detected by DGGE were Bacteroidetes (39.73%), Proteobacteria (28.43%), Firmicutes (8.23%), and Cyanobacteria (5.14%). The majority of the sequences corresponding to uncultured bacteria belonged to Bacteroidetes phylum. Within Proteobacteria, the main genera detected were Halothiobacillus and Roseovarius. The environmental factors which influenced the community in a higher degree were the salinity and oxygen. The bacteria belonging to Bacteroidetes and Proteobacteria were positively influenced by salinity. Nevertheless, bacteria related to Alpha- and Betaproteobacteria classes and phylum Firmicutes showed a positive correlation with oxygen and pH but negative with salinity. The phylum Cyanobacteria were less influenced by the environmental variables. The bacterial community composition of Rambla Salada was also studied by dilution-to-extinction technique. Using this method, 354 microorganisms were isolated. The 16S sequences of 61 isolates showed that the diversity was very different to those obtained by DGGE and with those obtained previously by using classic culture techniques. The taxa identified by dilution-to-extinction were Proteobacteria (81.92%), Firmicutes (11.30%), Actinobacteria (4.52%), and Bacteroidetes (2.26%) phyla with Gammaproteobacteria as predominant class (65.7%). The main genera were: Marinobacter (38.85%), Halomonas (20.2%), and Bacillus (11.2%). Nine of the 61 identified bacteria showed less than 97% sequence identity with validly described species and may well represent new taxa. The number of bacteria in different samples, locations, and seasons were calculated by CARD-FISH, ranging from 54.3 to 78.9% of the total prokaryotic population. In conclusion, the dilution-to-extinction technique could be a complementary method to classical culture based method, but neither gets to cultivate the major taxa detected by DGGE. The bacterial community was influenced significantly by the physico-chemical parameters (specially the salinity and oxygen), the location and the season of sampling.

3.
FEMS Microbiol Ecol ; 87(2): 460-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24164442

RESUMEN

We have studied the diversity and distribution of Halomonas populations in the hypersaline habitat Rambla Salada (Murcia, southeastern Spain) by using different molecular techniques. Denaturing gradient gel electrophoresis (DGGE) using specific primers for the 16S rRNA gene of Halomonas followed by a multivariate analysis of the results indicated that richness and evenness of the Halomonas populations were mainly influenced by the season. We found no significant differences between the types of samples studied, from either watery sediments or soil samples. The highest value of diversity was reached in June 2006, the season with the highest salinity. Furthermore, canonical correspondence analysis (CCA) demonstrated that both salinity and pH significantly affected the structure of the Halomonas community. Halomonas almeriensis and two denitrifiers, H. ilicicola and H. ventosae were the predominant species. CARD-FISH showed that the percentage of Halomonas cells with respect to the total number of microorganisms ranged from 4.4% to 5.7%. To study the functional role of denitrifying species, we designed new primer sets targeting denitrification nirS and nosZ genes. Using these primers, we analyzed sediments from the upwelling zone collected in June 2006, where we found the highest percentage of denitrifiers (74%). Halomonas ventosae was the predominant denitrifier in this site.


Asunto(s)
Halomonas/clasificación , Microbiología del Suelo , Suelo/química , Secuencia de Bases , Biodiversidad , Electroforesis en Gel de Gradiente Desnaturalizante , Genes Bacterianos , Genes de ARNr , Halomonas/genética , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Salinidad , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA