Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 733: 150707, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39303524

RESUMEN

The excessive consumption of dietary sugar induces changes in gut microbiota, which is associated with obesity and metabolic dysregulation. This study investigated the effects of monosaccharide and fructooligosaccharide (FOS) intake on metabolic function and intestinal environment in germ-free (GF) mice lacking gut microbiota. GF mice were provided with a chow diet and administered a water solution containing 15 % glucose, fructose, or FOS for 4 weeks. Compared with FOS, glucose, and fructose induced increased hepatic lipid accumulation, increased adipocyte size in white adipose tissue, and upregulated hepatic lipogenic gene expression. FOS exhibited notably higher activation of hepatic AMP-activated protein kinase compared with those consuming glucose or fructose. Moreover, the number of goblet cells in the intestinal mucosa increased significantly with FOS consumption. Collectively, these findings indicate that while monosaccharides caused metabolic disorders in GF mice, FOS alleviated these disorders and increased the number of goblet cells in the intestinal mucosa. These results provide evidence for the occurrence of these effects independently of the gut microbiota.


Asunto(s)
Vida Libre de Gérmenes , Mucosa Intestinal , Metabolismo de los Lípidos , Hígado , Animales , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Masculino , Azúcares de la Dieta , Microbioma Gastrointestinal/efectos de los fármacos , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Ratones Endogámicos C57BL , Fructosa/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/efectos de los fármacos , Glucosa/metabolismo
2.
J Nutr ; 154(9): 2670-2679, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025334

RESUMEN

BACKGROUND: Obesity is associated with low-grade inflammation and increased intestinal permeability (IP). The Brazil nut (BN) (Bertholletia excelsa H.B.K.) appears to be a promising dietary intervention to control inflammation by enhancing antioxidant defenses. OBJECTIVES: We aimed to assess the effect of daily BN consumption on inflammatory biomarkers and IP in the context of an energy-restricted intervention. Furthermore, we evaluated the correlation between the changes in these inflammatory markers and the changes in serum selenium and IP. METHODS: In this 8-wk nonrandomized controlled trial, 56 women with overweight or obesity were allocated into 2 groups, both following an energy-restricted diet (-500 kcal/d). The control group (CO) consumed a nut-free diet, while the BN group consumed 8 g BN/d, providing 347.2 µg selenium (Se). Inflammatory cytokines were analyzed in plasma and Se in serum. IP was assessed using the lactulose/mannitol test (LM ratio). RESULTS: Forty-six women completed the intervention. Both groups achieved similar energy restriction (CO Δ= -253.7 ± 169.4 kcal/d; BN Δ= -265.8 ± 141.8 kcal/d) and weight loss (CO Δ= -2.5 ± 0.5 kg; BN Δ= -3.5 ± 0.5 kg). The BN group showed lower values of C-reactive protein, tumor necrosis factor, interleukin (IL)1-ß, IL-8, percentage lactulose excretion, and LM ratio than the CO group. Additionally, changes in serum Se concentration were predictive of changes in IL-8 concentration (ß: -0.054; adjusted R2: 0.100; 95% confidence interval [CI]: -0.100; -0.007; P = 0.025), and changes in IL-8 were predictive of changes in the LM ratio (ß: 0.006; adjusted R2: 0.101; 95% CI: 0.001, 0.011; P = 0.024). CONCLUSIONS: Regular intake of BNs can be a promising complementary dietary strategy for controlling low-grade inflammation and improving IP in women with overweight/obesity undergoing energy-restricted treatment. However, the effects of BNs seem to be Se status-dependent. This trial was registered at the Brazilian Registry of Clinical Trials (ReBEC: https://ensaiosclinicos.gov.br/rg/RBR-3ntxrm/.


Asunto(s)
Bertholletia , Biomarcadores , Obesidad , Sobrepeso , Selenio , Humanos , Femenino , Bertholletia/química , Adulto , Obesidad/dietoterapia , Obesidad/sangre , Biomarcadores/sangre , Sobrepeso/dietoterapia , Sobrepeso/sangre , Persona de Mediana Edad , Selenio/sangre , Inflamación/sangre , Restricción Calórica , Permeabilidad , Brasil , Nueces , Citocinas/sangre , Funcion de la Barrera Intestinal
3.
Crit Rev Food Sci Nutr ; : 1-22, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779723

RESUMEN

A large and growing body of literature has investigated the broad antibacterial spectrum and strong synergistic antimicrobial activity of medium chain monoglycerides (MCMs) have been widely investigated. Recently, more and more researches have focused on the regulation of MCMs on metabolic health and gut microbiota both in vivo and in vitro. The current review summarizes the digestion, absorption and metabolism of MCMs. Subsequently, it focuses on the functional and nutritional properties of MCMs, including the antibacterial and antiviral characteristics, the modulation of metabolic balance, the regulation of gut microbiota, and the improvement in intestinal health. Additionally, we discuss the most recent developments and application of MCMs using nanotechnologies in food industry, poultry and pharmaceutical industry. Additionally, we analyze recent application examples of MCMs and their nanotechnology formation used in food. The development of nanotechnology platforms facilitating molecular encapsulation and functional presentation contribute to the application of hydrophobic fatty acids and monoglycerides in food preservation and their antibacterial effectiveness. This study emphasizes the metabolic mechanisms and biological activity of MCMs by summarizing the prevailing state of knowledge on this topic, as well as providing insights into prospective techniques for developing the beneficial applications of MCMs to realize the industrialized production.

4.
Br J Nutr ; 131(6): 974-986, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37886873

RESUMEN

To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.


Asunto(s)
Antioxidantes , Glycine max , Antioxidantes/metabolismo , Inmunidad Innata , Dieta/veterinaria , Péptidos/farmacología , Malondialdehído , Alimentación Animal/análisis
5.
Fish Shellfish Immunol ; 144: 109227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984616

RESUMEN

Millettia speciosa Champ (MSP) is a natural Chinese herb that improves gastrointestinal health and enhances animal immunity. An 8-week feeding trial with different MSP levels (0, 150, 300, and 600 mg/kg) was conducted to evaluate the promotive effects of MSP in Cyprinus carpio. Results indicate that MSP improved intestinal immunity to some extent evidenced by the immuno-antioxidant parameters and the 16S rRNA in the Illumina MiSeq platform. With the analysis of transcriptome sequencing, 4685 differentially expressed genes (DEGs) were identified, including 2149 up-regulated and 2536 down-regulated. According to the GO and KEGG enrichments, DEGs were mainly involved in the immune system. Transcriptional expression of the NOD-like signaling pathway and key genes retrieved from the transcriptome database confirmed that innate immunity was improved in response to dietary MSP administration. Therefore, MSP could be used as a feed supplement that enhances immunity. This may provide insight into Chinese herb additive application in aquaculture production.


Asunto(s)
Carpas , Millettia , Animales , Millettia/genética , Carpas/genética , ARN Ribosómico 16S , Suplementos Dietéticos/análisis , Intestinos
6.
Fish Shellfish Immunol ; 151: 109750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969153

RESUMEN

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Glucósidos , Fenoles , Animales , Lubina/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Glucósidos/administración & dosificación , Glucósidos/farmacología , Fenoles/administración & dosificación , Fenoles/farmacología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Inmunidad Innata/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Distribución Aleatoria
7.
Fish Shellfish Immunol ; 153: 109810, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111606

RESUMEN

Feed terrestrial components can induce intestinal stress in fish, affecting their overall health and growth. Recent studies suggest that seaweed products may improve fish intestinal health. In this experiment, three types of feed were prepared: a basic diet (C group), a diet with 0.2 % fucoidan (F group), and a diet with 3 % kelp powder (K group). These diets were fed to large yellow croaker (Larimichthys crocea) over an 8-week period. Each feed was randomly assigned to three seawater cages (4.0 m × 4.0 m × 5.0 m) containing 700 fish per cage. The study assessed changes in growth and intestinal health, including intestinal tissue morphology, digestive enzyme activities, expression of immune-related genes, and bacterial community structure. Results showed that incorporating seaweed products into the diet improved the growth and quality traits of large yellow croakers and significantly enhanced their intestinal digestive capacity (P < 0.05). Specifically, the 0.2 % fucoidan diet significantly increased the intestinal villus length and the activities of digestive enzymes such as trypsin, lipase, and α-amylase (P < 0.05). The 3 % kelp powder diet significantly enhanced the intestinal crypt depth and the activities of trypsin and lipase (P < 0.05). Both seaweed additives significantly enhanced intestinal health by mitigating inflammatory factors. Notably, the control group's biomarkers indicated a high presence of potential pathogenic bacteria, such as Streptococcus, Pseudomonas, Enterococcus, Herbaspirillum, Neisseria, Haemophilus, and Stenotrophomonas. After the addition of seaweed additives, these bacteria were no longer the indicator bacteria, while the abundance of beneficial bacteria like Ligilactobacillus and Lactobacillus increased. Significant reductions in the expression of inflammatory factors (e.g., il-6, tnf-α, ifn-γ in the fucoidan group and il-8 in the kelp powder group) further supported these findings. Our findings suggested that both seaweed additives helped balance intestinal microbial communities and reduce bacterial antigen load. Considering the effects, costs, manufacturing, and nutrition, adding 3 % kelp powder to the feed of large yellow croaker might be preferable. This study substantiated the beneficial effects of seaweed on the aquaculture of large yellow croaker, particularly in improving intestinal health. These findings advocated for its wider and more scientifically validated use in fish farming practices.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Intestinos , Kelp , Perciformes , Polisacáridos , Animales , Polisacáridos/farmacología , Polisacáridos/administración & dosificación , Polisacáridos/química , Dieta/veterinaria , Alimentación Animal/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Perciformes/inmunología , Intestinos/efectos de los fármacos , Suplementos Dietéticos/análisis , Kelp/química , Polvos/química , Distribución Aleatoria , Digestión/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Bacterias/efectos de los fármacos
8.
Fish Shellfish Immunol ; 153: 109868, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216713

RESUMEN

Our previous study has demonstrated that supplementation of yeast ß-glucan improves intestinal health in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀), accompanied by the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. In this study, we investigated the effects of perturbing p38 MAPK activity using an inhibitor on the intestinal health of ß-glucan-injected pearl gentian grouper to elucidate the potential molecular mechanism underlying the protective effects of ß-glucan on the fish gut. The pearl gentian grouper was categorized into four groups: PBS injected (CD group), ß-glucan injected at a dose of 80 mg/kg (ßG group), p38 MAPK inhibitor SB203580 injected at a dose of 1 mg/kg (SB203580 group), and a combination of ß-glucan (80 mg/kg) and SB203580 (1 mg/kg) injected together (ßG + SB203580 group). The results revealed that the introduction of SB203580 significantly suppressed the ß-glucan-induced increase in p38α and p38ß mRNA expression, as well as the phosphorylation of p38 MAPK. Both the ßG group and SB203580 group exhibited reduced plica height and muscularis thickness. The ßG + SB203580 group displayed a significant reduction in mucin cell level; interleukin 1ß (il1ß) mRNA expression; induced nitric oxide synthase, tumor necrosis factor α, and IL1ß concentration; catalase and total antioxidant capacity activities. Additionally, there was a significant increase in the levels of intestinal malondialdehyde in the ßG + SB203580 group compared to the ßG group. The inhibition of the p38 MAPK signaling halted the trend of apoptosis-related caspase molecular expression induced by ß-glucan. In conclusion, ß-glucan injection resulted in elevated levels of mucous cells, nonspecific immunity, antioxidant capacity, and anti-apoptosis in grouper by modulating the p38 MAPK pathway. This study offers insights into the potential molecular mechanism underlying the protective effects of ß-glucan on intestinal health in pearl gentian grouper.


Asunto(s)
Intestinos , beta-Glucanos , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Intestinos/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/administración & dosificación , Piridinas/farmacología , Lubina/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Inmunidad Innata/efectos de los fármacos
9.
Fish Shellfish Immunol ; 154: 109911, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293705

RESUMEN

Zinc is essential for normal growth and reproduction in all animals and plays a crucial role in many biological processes. The present study aimed to compare the intervention effects of zinc on intestinal health in a high lipid diet or high starch diet. Seven iso-nitrogenous (∼520 g kg-1) diets were formulated containing a positive control diet (115 g kg-1 lipid + 115 g kg-1 starch + 20 mg kg-1 Zn), three high starch diets (HS, 166 g kg-1 starch) and three high lipid diets (HL, 182 g kg-1 lipid), with 0 (HS-LZn, HL-LZn), 20 (HS-MZn, HL-MZn) and 150 (HS-HZn, HL-HZn) mg kg-1 Zn being supplemented. High starch diet and high lipid diet promoted feed efficiency, as evidenced by the lower feed conversion ratio. Three-way factorial ANOVA analysis showed high starch diet (166 g kg-1) significantly decreased final body weight and weight gain compared to the normal starch level (115 g kg-1). Diamine oxidase in serum significantly increased in diets HS-LZn and HL-LZn. In addition, distal intestinal mucosal fold damage and inflammatory infiltration were observed in the HS-LZn, HS-HZn, HL-LZn and HL-HZn groups. Fish fed HL diets (HL-LZn, HL-MZn, HL-HZn) showed lower expressions of claudin 5 and claudin 34, and higher IgD and IgM. Diets HL-LZn and HL-MZn significantly up-regulated C4 and C7. Proinflammatory cytokines including il8, il1ß and tnfα significantly up-regulated in diet HL-LZn, even higher than the HS-LZn. Intestinal microbial composition indicated the abundance of Cetobacterium in HL-LZn was significantly higher than the control and HL-MZn diets. Similarly, LEfSe showed that Cetobacterium (P = 0.039) significantly enriched in the HL-LZn group. This study clarified high energy diet induced intestinal damage, which can be alleviated by zinc.

10.
Fish Shellfish Immunol ; 150: 109621, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740230

RESUMEN

This study aims to explore the effects of supplementing cholesterol in plant-based feed on intestinal barriers (including physical barrier, chemical barrier, immune barrier, biological barrier) of GIFT strain tilapia (Oreochromis niloticus). Four isonitrogenous and isolipidic diets were prepared as follows: plant-based protein diet (Con group) containing corn protein powder, soybean meal, cottonseed meal, and rapeseed meal, with the addition of cholesterol at a level of 0.6 % (C0.6 % group), 1.2 % (C1.2 % group), and 1.8 % (C1.8 % group), respectively. A total of 360 fish (mean initial weight of (6.08 ± 0.12) g) were divided into 12 tanks with 30 fish per tank, each treatment was set with three tanks and the feeding period lasted 9 weeks. Histological analysis revealed that both the C0.6 % and C1.2 % groups exhibited a more organized intestinal structure, with significantly increased muscle layer thickness compared to the Con group (P < 0.05). Furthermore, in the C1.2 % group, there was a significant up-regulation of tight junction-related genes (claudin-14, occludin, zo-1) compared to the Con group (P < 0.05). 5-ethynyl-2'-deoxyuridine staining results also demonstrated a notable enhancement in intestinal cell proliferation within the C1.2 % group (P < 0.05). Regarding the intestinal chemical barrier, trypsin and lipase activities were significantly elevated in the C1.2 % group (P < 0.05), while hepcidin gene expression was considerably down-regulated in this group but up-regulated in the C1.8 % group (P < 0.05). In terms of the intestinal immune barrier, inflammation-related gene expression levels (tnf-α, il-1ß, caspase 9, ire1, perk, atf6) were markedly reduced in the C1.2 % group (P < 0.05). Regarding the intestinal biological barrier, the composition of the intestinal microbiota indicated that compared to the Con group, both the 0.6 % and 1.2 % groups showed a significant increase in Shannon index (P < 0.05). Additionally, there was a significant increase in the abundance of Firmicutes and Clostridium in the C1.2 % group (P < 0.05). In summary, supplementation of 1.2 % cholesterol in the plant-based diet exhibits the potential to enhance intestinal tight junction function and improve the composition of intestinal microbiota, thereby significantly promoting tilapia's intestinal health.


Asunto(s)
Alimentación Animal , Cíclidos , Dieta , Intestinos , Animales , Cíclidos/inmunología , Alimentación Animal/análisis , Dieta/veterinaria , Intestinos/efectos de los fármacos , Intestinos/inmunología , Colesterol en la Dieta/administración & dosificación , Colesterol en la Dieta/efectos adversos , Enfermedades de los Peces/inmunología , Suplementos Dietéticos/análisis , Distribución Aleatoria , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Dieta a Base de Plantas
11.
Fish Shellfish Immunol ; 153: 109807, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102969

RESUMEN

To investigate the effects of non-grain protein source and water temperature on growth and feed utilization differences of grass carp, the effects of different protein sources on the growth performance, serum biochemistry, digestive enzymes, amino acid transport and intestinal health of grass carp were studied at 24 °C, 28 °C and 32 °C. In this study, a total of 1350 grass carp (Ctenopharyngodon idella) (initial weight 5.00 ± 0.02 g) were selected, and Clostridium autoethanogenum protein (CAP), Tenebrio molitor meal (TMM), cottonseed protein concentrate (CPC) and Chlorella powder (CHP) were used as a single protein source to completely replace soybean meal for 56 days. The results showed that the final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR) and protein efficiency ratio (PER) of grass carp increased significantly with the increasing temperature (P < 0.001). The CHP and SBM groups showed no significant differences in FBW, WGR, SGR and PER (P > 0.05), which were higher than the CAP, TMM and CPC groups (P < 0.001). The alanine transaminase (ALT), aspartate aminotransferase (AST), total protein (TP) and triglyceride (TG) concentrations of grass carp at 32 °C were significantly lower than those at 24 °C and 28 °C (P < 0.001). The acid phosphatase (ACP) activity decreased significantly with the increase of temperature (P = 0.001). The amylase (AMS) activity of the TMM, CPC and CHP groups was significantly lower than that of the SBM and CAP groups (P < 0.001), and the ACP and lipase (LPS) activities in the TMM group were significantly lower than those in the SBM group (P < 0.001). In addition, the interaction between temperatures and protein sources significantly affected the gene expression levels of amino acid transport including solute carrier family 1 member 3 (SLC1A3), solute carrier family 7 member 1 (SLC7A1), solute carrier family 7 member 5 (SLC7A5), solute carrier family 15 member 1b (SLC15A1b), solute carrier family 7 member 7 (SLC7A7), target of rapamycin (TOR), 4E binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1), intestinal inflammatory including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-10 (IL-10) and tight junction proteins (occludin, claudin1, claudin3, claudin7 and claudin11) (P ≤ 0.001). Collectively, our results indicated that CHP could be a potential protein source in the case of complete replacement of soybean meal in grass carp.


Asunto(s)
Aminoácidos , Alimentación Animal , Carpas , Dieta , Temperatura , Animales , Carpas/crecimiento & desarrollo , Carpas/inmunología , Alimentación Animal/análisis , Aminoácidos/metabolismo , Dieta/veterinaria , Intestinos , Proteínas en la Dieta/metabolismo , Distribución Aleatoria
12.
Fish Shellfish Immunol ; 153: 109846, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168291

RESUMEN

Probiotic Bacillus pumilus SE5, heat-inactivated (HSE5) or active (ASE5), were supplemented to high soybean meal (HSM) (36 %) diet at whole term (0-56 days) and middle term (29-56 days) to investigate the preventing and repairing effects of B. pumilus SE5 in ameliorating the adverse effects of HSM in Epinephelus coioides. The results suggested that the HSM significantly decreased the weight gain rate (WGR), specific growth rate (SGR), and increased the feed conversion rate (FCR) at day 56 (P < 0.05), while HSE5 and ASE5 promoted the growth performance. The HSE5 and ASE5 showed preventive and reparative functions on the antioxidant capacity and serum immunity, with significantly increased the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-PX) activities, and reduced malondialdehyde (MDA) level, and increased acid phosphatase (ACP), alkaline phosphatase (AKP), immunoglobulin M (IgM) and complement 3 (C3). The HSM impaired the intestinal health (destroyed the intestinal structure, significantly increased the contents of serum D-lactic acid and diamine oxidase, and reduced the expressions of claudin-3 and occludin), while HSE5 and ASE5 improved them at whole term and middle term. The HSM impaired the intestinal microbiota and reduced its diversity, and the HSE5 or ASE5 improved the intestinal microbiota (especially at whole term). HSE5 and ASE5 improved the intestinal mRNA expressions of anti-inflammatory genes (il-10 and tgf-ß1) and reduced the expressions of pro-inflammatory genes (il-1ß, il-8, il-12), and promoted the expressions of humoral immune factor-related genes (cd4, igm, mhcII-α) and antimicrobial peptide genes (ß-defensin, epinecidin-1 and hepcidin-1), and decreased the expressions of NF-κB/MAPK signaling pathway-related genes (ikk-α, nf-κb, erk-1), and improved the expressions of MAPK signaling pathway-related gene p38-α (P < 0.05). In conclusion, the heat-inactivated and active B. pumilus SE5 effectively prevented and repaired the suppressive effects of soybean meal in E. coioides, which underscored the potential of B. pumilus SE5 as a nutritional intervention agent in HSM diet in aquaculture.


Asunto(s)
Alimentación Animal , Bacillus pumilus , Lubina , Dieta , Glycine max , Probióticos , Animales , Lubina/inmunología , Alimentación Animal/análisis , Dieta/veterinaria , Probióticos/administración & dosificación , Probióticos/farmacología , Bacillus pumilus/inmunología , Bacillus pumilus/química , Glycine max/química , Calor/efectos adversos , Inmunidad Innata , Distribución Aleatoria , Microbioma Gastrointestinal/efectos de los fármacos
13.
Fish Shellfish Immunol ; 149: 109551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599363

RESUMEN

The present study aimed to evaluate the effect of king oyster mushroom (Pleurotus eryngii) root waste and soybean meal co-fermented protein (CFP) on growth performance, feed utilization, immune status, hepatic and intestinal health of largemouth bass (Micropterus salmoides). Largemouth bass (12.33 ± 0.18 g) were divided into five groups, fed with diets containing 0 %, 5 %, 10 %, 15 % and 20 % CFP respectively for 7 weeks. The growth performance and dietary utilization were slightly improved by the supplementation of CFP. In addition, improved immunoglobulin M (IgM) content and lysozyme activity in treatments confirm the enhancement of immunity in fish by the addition of CFP, especially in fish fed 20 % CFP (P < 0.05). Furthermore, CFP significantly improved liver GSH (glutathione) content in groups D10 and D15 (P < 0.05), and slightly improved total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity while slightly reduced malondialdehyde (MDA) content. Simultaneously, the upregulation of lipolysis-related genes (PPARα, CPT1 and ACO) expression and downregulation of lipid synthesis-related genes (ACC and DGAT1) expression was recorded in the group D20 compared with the control (P < 0.05), which were consistent with the decreased liver lipid contents, suggests that lipid metabolism was improved by CFP. In terms of intestinal structural integrity, ameliorated intestinal morphology in treatments were consistent with the upregulated Occludin, Claudin-1 and ZO-1 genes expression. The intestinal pro-inflammatory cytokines (TNF-α and IL-8) expression were suppressed while the anti-inflammatory cytokines (IL-10 and TGF-ß) were activated in treatments. The expression of antimicrobial peptides (Hepcidin-1, Piscidin-2 and Piscidin-3) and intestinal immune effectors (IgM and LYZ) were slightly up-regulated in treatments. Additionally, the relative abundance of intestinal beneficial bacteria (Firmicutes) increased while the relative abundance of potential pathogenic bacteria (Fusobacterium and Proteobacteria) decreased, which indicated that the intestinal microbial community was well-reorganized by CFP. In conclusion, dietary CFP improves growth, immunity, hepatic and intestinal health of largemouth bass, these data provided a theoretical basis for the application of this novel functional protein ingredient in fish.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Suplementos Dietéticos , Glycine max , Hígado , Pleurotus , Animales , Lubina/inmunología , Lubina/crecimiento & desarrollo , Alimentación Animal/análisis , Dieta/veterinaria , Pleurotus/química , Glycine max/química , Hígado/inmunología , Hígado/efectos de los fármacos , Hígado/metabolismo , Suplementos Dietéticos/análisis , Intestinos/inmunología , Intestinos/efectos de los fármacos , Fermentación , Inmunidad Innata/efectos de los fármacos , Distribución Aleatoria , Raíces de Plantas/química , Relación Dosis-Respuesta a Droga
14.
Environ Res ; 258: 119402, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38866314

RESUMEN

Antibiotic residues, such as tetracycline (TET), in aquatic environments have become a global concern. The liver and gut are important for immunity and metabolism in aquatic organisms. In this study, juvenile groupers were subjected to 1 and 100 µg/L TET for 14 days, and the physiological changes of these fish were evaluated from the perspective of gut-liver axis. After TET exposure, the liver showed histopathology, lipid accumulation, and the elevated ALT activity. An oxidative stress response was induced in the liver and the metabolic pattern was disturbed, especially pyrimidine metabolism. Further, intestinal health was also affected, including the damaged intestinal mucosa, the decreased mRNA expression levels of tight junction proteins (ZO-1, Occludin, and Claudin-3), along with the increased gene expression levels of inflammation (IL-1ß, IL-8, TNF-α) and apoptosis (Casp-3 and p53). The diversity of intestinal microbes increased and the community composition was altered, and several beneficial bacteria (Lactobacillus, Bacteroidales S24-7 group, and Romboutsia) and harmful (Aeromonas, Flavobacterium, and Nautella) exhibited notable correlations with hepatic physiological indicators and metabolites. These results suggested that TET exposure can adversely affect the physiological homeostasis of groupers through the gut-liver axis.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Hígado , Tetraciclina , Contaminantes Químicos del Agua , Animales , Hígado/efectos de los fármacos , Homeostasis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Tetraciclina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Lubina/fisiología , Antibacterianos/toxicidad , Estrés Oxidativo/efectos de los fármacos
15.
Anim Biotechnol ; 35(1): 2259436, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37768126

RESUMEN

This experiment was conducted to investigate the effects of JUNCAO Ganoderma lucidum polysaccharide peptide (JCGLPP) on slaughter performance and intestinal health of Minxinan black rabbits, which aimed to provide the basis for the application of JCGLPP in meat rabbits. One hundred male weaned Minxinan black rabbits of (33 ± 2) d [(initial body mass (655.65 ± 25.90) g] were randomly divided into four groups with five replicates per group and five rabbits per replicate. The diets were supplemented with 0 (control group), 50 (group I), 100 (group II) and 150 mg·kg-1 (group III) of JCGLPP, respectively. This experiment lasted for 56 days. The results are shown below: (1) The live weight before slaughter of groups I and III was significantly higher than that of control group (p < 0.05); The full net bore weight of group III was significantly higher than that of control group (p < 0.05). (2) pH value of group I was significantly higher than that of control group (p < 0.05); NH3-N content in experimental groups were significantly higher than that in control group(p < 0.05) while NH3-N content in group I was significantly higher than that in groups III and II (p < 0.05); The content of butyric acid in group II was significantly lower than that in control group (p < 0.05); There were no significant differences in acetic acid, isovaleric acid, isobutyric acid and propionic acid in experimental groups compared with control group (p > 0.05). (3) The Occludin content in duodenum, jejunum and ileum of groups I and II was significantly higher than that of control group (p < 0.05). (4) At the phylum level, Firmicutes and Bacteroidetes were the dominant phylum in each group. At the genus level, norank_f__norank_o__Clostridia_UCG-014 in group II were significantly higher than those in control group (p < 0.05). In conclusion, although dietary JCGLPP supplementation could not improve slaughter performance of Minxinan black rabbits, it could improve cecal fermentation parameters and intestinal flora structure and composition of Minxinan black rabbits to a certain extent. Our results revealed that 100 mg·kg-1 might be the optimal concentration obtained in dietary JCGLPP supplementation, which provided ideas and feasibility for drug combination.


Asunto(s)
Proteoglicanos , Reishi , Conejos , Masculino , Animales , Intestinos , Suplementos Dietéticos , Dieta , Alimentación Animal/análisis
16.
J Dairy Sci ; 107(1): 24-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690710

RESUMEN

The main purpose of the current study was to investigate the ameliorative effects of bovine milk osteopontin (bmOPN) on the gut dysfunction of pregnant rats fed a high-fat diet (HFD). Bovine milk osteopontin was supplemented at a dose of 6 mg/kg body weight. Bovine milk osteopontin supplementation during pregnancy reduced colonic inflammation of HFD dams, and it also increased the colonic expression of ZO-1 and claudin-4 of HFD dams. Bovine milk osteopontin significantly enriched the relative abundance of Bacteroidetes, whereas it decreased Proteobacteria, Helicobacteraceae, and Desulfovibrionaceae in feces of HFD dams. The levels of isobutyric acid and pentanoic acid in the HFD + bmOPN group were higher than that of the HFD group. Functional predication analysis of microbial genomes revealed that bmOPN supplementation to HFD pregnancies changed 4 Kyoto Encyclopedia of Genes and Genomes pathways including bile acid biosynthesis. Further, bmOPN enriched hepatic taurochenodeoxycholic acid and tauroursodeoxycholic acid plus taurohyodeoxycholic acid in the gut of HFD maternal rats. Our findings suggested that bmOPN improved the gut health of HFD pregnant rats partially through modulating bile acid biosynthesis.


Asunto(s)
Microbioma Gastrointestinal , Leche , Femenino , Embarazo , Ratas , Animales , Ratones , Dieta Alta en Grasa , Osteopontina/farmacología , Ácidos y Sales Biliares/farmacología , Ratones Endogámicos C57BL
17.
Ecotoxicol Environ Saf ; 284: 116901, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178762

RESUMEN

Glyphosate is the active ingredient in the herbicide (i.e., Roundup, Touchdown and Erasure), the safety of which has become a social concern. Hawthorn-leaf flavonoid (HF) possesses various biological functions, including antioxidant, regulating lipid metabolism and intestinal microbiota. Whether HF could reduce the health risk of pure glyphosate to birds remain unknown. The experiment aimed to evaluate the effects of pure glyphosate (25 mg/kg added to water) on the intestinal health and microbiota of chicks and the protective roles of HF (60 mg/kg added to the diet). Exposure to glyphosate decreased growth performance, ileal morphology structure, and antioxidant capacity, and increased the serum level of lipid and pro-inflammatory factors. 16S rRNA sequencing indicated that glyphosate decreased bacterial richness and the abundance of Lactobacillus, and increased proportions of pathogens in the ileum. Metabolomic results revealed that glyphosate increased the level of the cholic acid and fatty acids in the ileac digesta. Meanwhile, glyphosate down-regulated the protein expression associated with lipid transport, antioxidant and tight junction in the ileal mucosal tissue, and up-regulated the pro-inflammatory, oxidative stress proteins. However, dietary HF supplementation effectively mitigated the adverse effects of glyphosate and improved intestinal health of chicks. Therefore, dietary HF can ameliorate the harmful effects of glyphosate on birds, which highlights the potential application of HF in reducing the health risks.


Asunto(s)
Pollos , Crataegus , Disbiosis , Flavonoides , Microbioma Gastrointestinal , Glicina , Glifosato , Herbicidas , Animales , Glicina/análogos & derivados , Glicina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Disbiosis/inducido químicamente , Herbicidas/toxicidad , Flavonoides/farmacología , Hojas de la Planta , Masculino , Antioxidantes/farmacología , Íleon/efectos de los fármacos , Íleon/patología
18.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39337442

RESUMEN

Chlorogenic acid (CGA) is a natural polyphenol with potent antioxidant and anti-inflammatory activities. However, the exact role of it in regulating intestinal health under oxidative stress is not fully understood. This study aims to investigate the effects of dietary CGA supplementation on the intestinal health of weaned piglets under oxidative stress, and to explore its regulatory mechanism. Twenty-four piglets were randomly divided into two groups and fed either a basal diet (CON) or a basal diet supplemented with 200 mg/kg CGA (CGA). CGA reduced the diarrhea rate, increased the villus height in the jejunum, and decreased the crypt depth in the duodenum, jejunum, and ileum of the weaned piglets (p < 0.05). Moreover, CGA increased the protein abundance of Claudin-1, Occludin, and zonula occludens (ZO)-1 in the jejunum and ileum (p < 0.05). In addition, CGA increased the mRNA expression of pBD2 in the jejunum, and pBD1 and pBD2 in the ileum (p < 0.05). The results of 16S rRNA sequencing showed that CGA altered the ileal microbiota composition and increased the relative abundance of Lactobacillus reuteri and Lactobacillus pontis (p < 0.05). Consistently, the findings suggested that the enhancement of the intestinal barrier in piglets was associated with increased concentrations of T-AOC, IL-22, and sIgA in the serum and T-AOC, T-SOD, and sIgA in the jejunum, as well as T-AOC and CAT in the ileum caused by CGA (p < 0.05). Meanwhile, CGA decreased the concentrations of MDA, IL-1ß, IL-6, and TNF-α in the serum and jejunum and IL-1ß and IL-6 in the ileum (p < 0.05). Importantly, this study found that CGA alleviated intestinal inflammation and oxidative stress in the piglets by inhibiting the TLR4/NF-κB signaling pathway and activating the Nrf2 signaling pathway. These findings showed that CGA enhances the intestinal health of weaned piglets by inhibiting the TLR4/NF-κB pathway and activating the Nrf2 pathway.


Asunto(s)
Ácido Clorogénico , Factor 2 Relacionado con NF-E2 , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Destete , Animales , Ácido Clorogénico/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Porcinos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Intestinos/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
19.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125968

RESUMEN

The use of cinnamaldehyde and Vitamin C can improve immunity and intestinal health. A two-way factorial design was employed to investigate the main and interactive effects of cinnamaldehyde and vitamin C on the growth, carcass, and intestinal health of broiler chickens. A total of 288 one-day-old female Arbor Acres broiler chicks were randomly distributed among four treatment groups, consisting of six replicate cages with 12 birds each. Four treatments were basal diet or control (CON), supplemental cinnamaldehyde (CA) 300 g/ton (g/t), vitamin C (VC) 300 g/t, and cinnamaldehyde 300 g/t, and vitamin C 300 g/t (CA + VC), respectively. The results showed that supplemental CA did not affect the growth performance or slaughter performance of broilers at 21 days (d), 42 days (d), and 1-42 days (d); however, it could improve intestinal barrier function at 42 d of age and reduce the mRNA expression of inflammatory factors in the intestine at 21 d and 42 d of age. Supplemental VC showed a trend towards increasing body weight gain (BWG) at 21 d (p = 0.094), increased breast muscle rate (at 21-d 5.33%, p < 0.05 and at 42-d 7.09%, p = 0.097), and decreased the abdominal fat (23.43%, p < 0.05) and drip loss (20.68%, p < 0.05) at 42-d. Moreover, VC improves intestinal morphology and intestinal barrier function and maintains a balanced immune response. The blend of CA and VC significantly upregulated the mRNA expression of myeloid differentiation factor 88 (MyD-88) in the intestine at 21 d of age, the mRNA expression of catalase (CAT), Occludin, Claudin-1, Mucin-2, nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR-4) in the intestine at 42 d of age (p < 0.01), and downregulated the mRNA expression of interleukin 10 (IL-10), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) in the intestine at 21-d and 42-d of age, and interleukin-1 beta (IL-1ß) mRNA in intestine at 42 d of age (p < 0.01). This study suggested that the combination of CA and VC had the potential to regulate intestinal health and result in better carcass character of broilers.


Asunto(s)
Acroleína , Ácido Ascórbico , Pollos , Intestinos , Animales , Acroleína/análogos & derivados , Acroleína/farmacología , Ácido Ascórbico/farmacología , Intestinos/efectos de los fármacos , Femenino , Suplementos Dietéticos , Alimentación Animal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos
20.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891778

RESUMEN

Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1ß, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.


Asunto(s)
Ácidos y Sales Biliares , Mucosa Intestinal , Estrés Oxidativo , Alcohol Feniletílico , Animales , Estrés Oxidativo/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Porcinos , Ácidos y Sales Biliares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Intestinos/efectos de los fármacos , Intestinos/patología , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA