RESUMEN
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Asunto(s)
Optogenética/métodos , Proteínas de Plantas/química , Retinoides/química , Rodopsinas Microbianas/química , Rodopsinas Sensoriales/química , Chlorophyta/clasificación , Chlorophyta/genética , Chlorophyta/metabolismo , Evolución Molecular , Expresión Génica , Luz , Fototransducción , Potenciales de la Membrana/fisiología , Modelos Moleculares , Procesos Fotoquímicos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Retinoides/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismoRESUMEN
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles.
Asunto(s)
Rodopsina , Rodopsinas Microbianas , Humanos , Rodopsina/química , Rodopsina/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismoRESUMEN
Wound healing is a complex physiological process that requires precise control and modulation of many parameters. Therapeutic ion and biomolecule delivery has the capability to regulate the wound healing process beneficially. However, achieving controlled delivery through a compact device with the ability to deliver multiple therapeutic species can be a challenge. Bioelectronic devices have emerged as a promising approach for therapeutic delivery. Here, we present a pro-reparative bioelectronic device designed to deliver ions and biomolecules for wound healing applications. The device incorporates ion pumps for the targeted delivery of H+ and zolmitriptan to the wound site. In vivo studies using a mouse model further validated the device's potential for modulating the wound environment via H+ delivery that decreased M1/M2 macrophage ratios. Overall, this bioelectronic ion pump demonstrates potential for accelerating wound healing via targeted and controlled delivery of therapeutic agents to wounds. Continued optimization and development of this device could not only lead to significant advancements in tissue repair and wound healing strategies but also reveal new physiological information about the dynamic wound environment.
RESUMEN
Recent experiments reveal that the volume of adhered cells is reduced as their basal area is increased. During spreading, the cell volume decreases by several thousand cubic micrometers, corresponding to large pressure changes of the order of megapascals. We show theoretically that the volume regulation of adhered cells is determined by two concurrent conditions: mechanical equilibrium with the extracellular environment and a generalization of Donnan (electrostatic) equilibrium that accounts for active ion transport. Spreading affects the structure and hence activity of ion channels and pumps, and indirectly changes the ionic content in the cell. We predict that more ions are released from the cell with increasing basal area, resulting in the observed volume-area dependence. Our theory is based on a minimal model and describes the experimental findings in terms of measurable, mesoscale quantities. We demonstrate that two independent experiments on adhered cells of different types fall on the same master volume-area curve. Our theory also captures the measured osmotic pressure of adhered cells, which is shown to depend on the number of proteins confined to the cell, their charge, and their volume, as well as the ionic content. This result can be used to predict the osmotic pressure of cells in suspension.
Asunto(s)
Adhesión Celular , Tamaño de la Célula , Modelos Teóricos , Osmorregulación/fisiología , Animales , Humanos , Transporte Iónico , Presión OsmóticaRESUMEN
Single-walled carbon nanotubes (SWCNTs) are well-established transporters of electronic current, electrolyte, and ions. In this work, we demonstrate an electrically actuated biomimetic ion pump by combining these electronic and nanofluidic transport capabilities within an individual SWCNT device. Ion pumping is driven by a solid-state electronic input, as Coulomb drag coupling transduces electrical energy from solid-state charge along the SWCNT shell to electrolyte inside the SWCNT core. Short-circuit ionic currents, measured without an electrolyte potential difference, exceed 1 nA and scale larger with increasing ion concentrations through 1 M, demonstrating applicability under physiological (â¼140 mM) and saltwater (â¼600 mM) conditions. The interlayer coupling allows ionic currents to be tuned with the source-drain potential difference and electronic currents to be tuned with the electrolyte potential difference. This combined electronic-nanofluidic SWCNT device presents intriguing applications as a biomimetic ion pump or component of an artificial membrane.
Asunto(s)
Bombas Iónicas/química , Transporte Iónico/genética , Nanotecnología , Nanotubos de Carbono/química , Biomimética , Electricidad , Electrólitos/química , TransductoresRESUMEN
The conversion of light energy into ion gradients across biological membranes is one of the most fundamental reactions in primary biological energy transduction. Recently, the structure of the first light-activated Na+ pump, Krokinobacter eikastus rhodopsin 2 (KR2), was resolved at atomic resolution [Kato HE, et al. (2015) Nature 521:48-53]. To elucidate its molecular mechanism for Na+ pumping, we perform here extensive classical and quantum molecular dynamics (MD) simulations of transient photocycle states. Our simulations show how the dynamics of key residues regulate water and ion access between the bulk and the buried light-triggered retinal site. We identify putative Na+ binding sites and show how protonation and conformational changes gate the ion through these sites toward the extracellular side. We further show by correlated ab initio quantum chemical calculations that the obtained putative photocycle intermediates are in close agreement with experimental transient optical spectroscopic data. The combined results of the ion translocation and gating mechanisms in KR2 may provide a basis for the rational design of novel light-driven ion pumps with optogenetic applications.
Asunto(s)
Transporte Iónico , Rodopsina/química , ATPasa Intercambiadora de Sodio-Potasio/química , Sodio/química , Sitios de Unión , Membrana Celular/metabolismo , Simulación por Computador , Cristalografía por Rayos X , Metabolismo Energético , Flavobacteriaceae/metabolismo , Hidrógeno/química , Iones , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Protones , Teoría Cuántica , Retinaldehído/química , Rodopsina/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Electricidad Estática , Agua/químicaRESUMEN
Precise control of ion transport is a fundamental characteristic for the sustainability of life. It remains a great challenge to develop practical and high-performance artificial ion-transport system that can allow active transport of ions (protons) in an all solid-state nanoporous material. Herein, we develop a Janus microporous membrane by combining reduced graphene oxide (rGO) and conjugated microporous polymer (CMP) for controllable photodriven ion transport. Upon light illumination, a net ionic current is generated from the CMP to the rGO side of the membrane, indicating that the rGO/CMP Janus membrane can realize photodriven directional and anti-gradient ion transport. Analogously to the p-n junction in photovoltaic devices, light is firstly converted into separated charges to trigger a transmembrane potential, which subsequently drives directional ion movement. For the first time, this method enables integration of a photovoltaic effect with an ionic field to drive active ion transport. With the advantages of scaled up production and easy fabrication, the concept of photovoltaic ion transport based on Janus microporous membrane may find wide application in energy storage and conversion, photodriven ion-sieving, and water treatment.
RESUMEN
Biological ion channels and ion pumps with sub-nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub-nanometer solid-state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin-based metal-organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular-size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid-state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with "uphill" ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.
Asunto(s)
Materiales Biomiméticos/química , Estructuras Metalorgánicas/química , Nanoporos , Materiales Biomiméticos/efectos de la radiación , Canales Iónicos/química , Luz , Nanopartículas del Metal/química , Estructuras Metalorgánicas/efectos de la radiación , Platino (Metal)/química , Porfirinas/química , Porfirinas/efectos de la radiaciónRESUMEN
MAIN CONCLUSION: The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.
Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Iones/metabolismo , Oryza/fisiología , Potasio/metabolismo , Sodio/metabolismo , Proteínas de Transporte de Catión/genética , Clorofila/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Genotipo , Imagen Óptica , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción , Salinidad , Tolerancia a la SalRESUMEN
The membrane dipole potential, ψ d, is an electrical potential difference with a value typically in the range 150-350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to ψ d of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on ψ d, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on ψ d, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in ψ d, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.
Asunto(s)
Membrana Celular/química , Colesterol/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Fosfolípidos/química , AnimalesRESUMEN
The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment.
Asunto(s)
Adaptación Fisiológica/genética , Epigénesis Genética/genética , Smegmamorpha/genética , Aclimatación/genética , Amilopectina , Animales , Evolución Biológica , Metilación de ADN/genética , Evolución Molecular , Agua Dulce , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Modelos Genéticos , Agua de Mar , Selección Genética/genéticaRESUMEN
OBJECTIVE: Circulating levels of cardiotonic steroids (CTS) are elevated in various chronic inflammatory conditions, but the role of CTS in inflammation remains largely unknown. We have previously shown that the CTS ouabain stimulates proinflammatory responses in murine macrophages. In this study, we aim to explore the mechanism how CTS induce proinflammatory responses in primary murine and human macrophages. APPROACH AND RESULTS: Using both murine peritoneal macrophages and human monocyte-derived macrophages, we demonstrated that ouabain activated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), leading to proinflammatory cytokine (eg, MCP-1 [monocyte chemotactic protein 1], TNF-α [tumor necrosis factor-α], IL-1ß [interleukin-1ß], and IL-6) production. By applying siRNA techniques and murine peritoneal macrophages isolated from genetically modified mice, we showed that macrophages partially deficient in Na/K-ATPase, the receptor for CTS, or fully deficient in the scavenger receptor CD36 or TLR4 (Toll-like receptor) were resistant to ouabain-induced NF-κB activation, suggesting an indispensable role of these 3 receptors in this pathway. Mechanistically, this effect of ouabain was independent of the ion transport function of the Na/K-ATPase. Instead, ouabain stimulated a signaling complex, including Na/K-ATPase, CD36, and TLR4. Subsequently, TLR4 recruited MyD88 adaptor protein for NF-κB activation. Furthermore, intraperitoneal injection of ouabain into mice specifically recruited Ly6C+CCR2+ monocyte subtypes to the peritoneal cavities, indicating that the CTS ouabain triggers inflammation in vivo. CONCLUSIONS: CTS activate NF-κB leading to proinflammatory cytokine production in primary macrophages through a signaling complex, including CD36, TLR4, and Na/K-ATPase. These findings warrant further studies on endogenous CTS in chronic inflammatory diseases, such as atherosclerosis.
Asunto(s)
Antígenos CD36/metabolismo , Cardiotónicos/toxicidad , Mediadores de Inflamación/metabolismo , Inflamación/inducido químicamente , Macrófagos Peritoneales/efectos de los fármacos , Ouabaína/toxicidad , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Antígenos CD36/deficiencia , Antígenos CD36/genética , Células Cultivadas , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Femenino , Inflamación/enzimología , Inflamación/genética , Macrófagos Peritoneales/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/deficiencia , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Tiempo , TransfecciónRESUMEN
The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs.
Asunto(s)
Señalización del Calcio/fisiología , ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Activación del Canal Iónico/fisiología , Animales , Humanos , Modelos BiológicosRESUMEN
The contamination of edible agricultural goods with pesticides, including dichlorvos (DVDP), poses a substantial public health risk, promoting severe morbidity and mortality, especially in developing countries. It has been shown that hesperidin (hesperetin-7-O-rhamnoglucoside or Hes-7-RGlc) preserves cytomembrane, redox, and lipid homeostasis; unfortunately, its function on dichlorvos-incited heart damage has not been investigated. This work explored the ameliorative influence of Hes-7-RGlc on DVDP-activated cardiotoxicity. For this end, forty-two rats were randomly appropriated into seven groups (6 rats/group): Control, DVDP alone (8â¯mg.kg⻹day⻹), DVDP supplied with either Hes-7-RGlc (50 and 100â¯mg.kg⻹day⻹) or the reference medication atropine (0.2â¯mg.kg⻹day⻹), and Hes-7-RGlc alone (50 and 10â¯mg.kg⻹day⻹) were the seven groups investigated. DVDP was administered orally for seven days, followed by fourteen days of Hes-7-RGlc therapy. Then the rats were euthanized, and their blood and hearts were removed. Hes-7-RGlc chemotherapy substantially (p<0.05) restored DVDP-elicited dynamics in plasma and cardiac/myocardium creatine kinase isoenzyme (CK-MB), major lipids (cholesterol, triacylglycerol, and phospholipids), electrolytes (Naâº, Kâº, Ca²âº, Mg²âº, Clâ»), and total protein. Hes-7-RGlc remedy decidedly (p<0.05) abolished DDVP-stimulated amplification in the cardiac concentration of H2O2, NO and malondialdehyde; annulled DVDP-educed decreases in heart GSH levels, activities of GST, SOD, catalase, and glutathione peroxidase, ion transporters (Naâº/Kâº-ATPase and Ca²âº/Mg²âº-ATPase), ALT, AST, ALP, and LDH-1. Collectively, Hes-7-RGlc can be advocated as a natural supplementary candidate and blocker of DVDP-provoked heart deficits via its capacity to reverse disruptions of electrolytes, ion pumps, redox status, and lipid homeostasis.
RESUMEN
Extracting lithium from seawater has emerged as a disruptive platform to resolve the issue of an ever-growing lithium shortage. However, achieving highly efficient and durable lithium extraction from seawater in an energy-efficient manner is challenging, as imposed by the low concentration of lithium ions (Li+) and high concentration of interfering ions in seawater. Here, we report a facile and universal strategy to develop photothermal "ion pumps" (PIPs) that allow achieving energy-efficient, augmented, and durable lithium extraction from seawater under sunlight. The key design of PIPs lies in the function fusion and spatial configuration manipulation of a hydrophilic Li+-trapping nanofibrous core and a hydrophobic photothermal shell for governing gravity-driven water flow and solar-driven water evaporation. Such a synergetic effect allows PIPs to achieve spontaneous, continuous, and augmented Li+ replenishment-diffusion-enrichment, as well as circumvent the impact of concentration polarization and scaling of interfering ions. We demonstrate that our PIPs exhibit dramatic enhancement in Li+ trapping rate and outstanding Li+ separation factor yet have ultralow energy consumption. Moreover, our PIPs deliver ultrastable Li+ trapping performance without scaling even under high-concentration interfering ions for 140 h operation, as opposed to the significant decrease of nearly 55.6% in conventional photothermal configuration. The design concept and material toolkit developed in this work can also find applications in extracting high-value-added resources from seawater and beyond.
RESUMEN
Photoreceptor cells of vertebrates feature ultrastructural membranes interspersed with abundant photosensitive ion pumps to boost signal generation and realize high gain in dim light. In light of this, superstructured optoionic heterojunctions (SSOHs) with cation-selective nanochannels are developed for manipulating photo-driven ion pumping. A template-directed bottom-up strategy is adopted to sequentially assemble graphene oxide (GO) and PEDOT:PSS into heterogeneous membranes with sculptured superstructures, which feature programmable variation in membrane topography and contain a donor-acceptor interface capable of maintaining electron-hole separation upon photoillumination. Such elaborate design endows SSOHs with a much higher magnitude of photo-driven ion flux against a concentration gradient in contrast to conventional optoionic membranes with planar configuration. This can be ascribed to the buildup of an enhanced transmembrane potential owing to the effective separation of photogenerated carriers at the heterojunction interface and the increase of energy input from photoillumination due to a synergistic effect of reflection reduction, broad-angle absorption, and wide-waveband absorption. This work unlocks the significance of membrane topographies in photo-driven transmembrane transportation and proposes such a universal prototype that could be extended to other optoionic membranes to develop high-performance artificial ion pumps for energy conversion and sensing.
Asunto(s)
Electrones , Bombas Iónicas , Animales , Potenciales de la Membrana , Transportes , Células FotorreceptorasRESUMEN
Multi-drug therapies are common in cardiovascular disease intervention; however, io channel/pump coordination has not been tested electrophysiologically. Apparently, inward currents were not elicited by Yoda1/10 nM or Dobutamine/100 nM alone in Ah-type baroreceptor neurons, but were by their combination. To verify this, electroneurography and the whole-cell patch-clamp technique were performed. The results showed that Ah- and C-volley were dramatically increased by the combination at 0.5 V and 5 V, in contrast to A-volley, as consistent with repetitive discharge elicited by step and ramp with markedly reduced current injection/stimulus intensity. Notably, a frequency-dependent action potential (AP) duration was increased with Iberiotoxin-sensitive K+ component. Furthermore, an increased peak in AP measured in phase plots suggested enhanced Na+ influx, cytoplasmic Ca2+ accumulation through reverse mode of Na+/Ca2+ exchanger, and, consequently, functional KCa1.1 up-regulation. Strikingly, the Yoda1- or Dbtm-mediated small/transient Na+/K+-pump currents were robustly increased by their combination, implying a quick ion equilibration that may also be synchronized by hyperpolarization-induced voltage-sag, enabling faster repetitive firing. These novel findings demonstrate multi-channel/pump collaboration together to integrate neurotransmission at the cellular level for baroreflex, providing an afferent explanation in sexual dimorphic blood pressure regulation, and raising the caution regarding the individual drug concentration in multi-drug therapies to optimize efficacy and minimize toxicity.
Asunto(s)
Barorreflejo , Animales , Barorreflejo/efectos de los fármacos , Masculino , Ratas , Presorreceptores/efectos de los fármacos , Presorreceptores/metabolismo , Presorreceptores/fisiología , Potenciales de Acción/efectos de los fármacos , Ratas Sprague-Dawley , Técnicas de Placa-ClampRESUMEN
Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.
Asunto(s)
Corteza Cerebral , Neuronas , Neuronas/fisiología , Organoides/fisiología , Encéfalo , NeurotransmisoresRESUMEN
Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.
RESUMEN
The aquatic gastropod Theodoxus fluviatilis occurs in Europe and adjacent areas of Asia. The snail species has formed two genetically closely related subgroups, the freshwater ecotype (FW) and the brackish water ecotype (BW). Other than individuals of the FW ecotype, those of the BW ecotype survive in salinities of up to 28. Coastal aquatic ecosystems may be affected by climate change due to salinization. Thus, we investigated how the two Theodoxus ecotypes adjust to changes in environmental salinity, focusing on the question whether Na+/K+-ATPase or V-ATPase are regulated on the transcriptional, the translational or at the activity level under changing external salinities. Animals were gradually adjusted to extreme salinities in containers under long-day conditions and constant temperature. Whole body RNA- or protein extracts were prepared. Semi-quantitative PCR- and western blot-analyses did not reveal major changes in transcript or protein abundances for the two transporters under low or high salinity conditions. No significant changes in ATPase activities in whole body extracts of animals adjusted to high or low salinity conditions were detected. We conclude that constitutive expression of ATPases is sufficient to support osmotic and ion regulation in this species under changing salinities given the high level of tolerance with respect to changes in body fluid volume.