Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29378723

RESUMEN

Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparumkelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Mutación/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Genotipo , Humanos , Tailandia
2.
Front Genet ; 13: 824483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464842

RESUMEN

Plasmodium falciparum infects millions and kills thousands of people annually the world over. With the emergence of artemisinin and/or multidrug resistant strains of the pathogen, it has become even more challenging to control and eliminate the disease. Multiomics studies of the parasite have started to provide a glimpse into the confounding genetics and mechanisms of artemisinin resistance and identified mutations in Kelch13 (K13) as a molecular marker of resistance. Over the years, thousands of genomes and transcriptomes of artemisinin-resistant/sensitive isolates have been documented, supplementing the search for new genes/pathways to target artemisinin-resistant isolates. This meta-analysis seeks to recap the genetic landscape and the transcriptional deregulation that demarcate artemisinin resistance in the field. To explore the genetic territory of artemisinin resistance, we use genomic single-nucleotide polymorphism (SNP) datasets from 2,517 isolates from 15 countries from the MalariaGEN Network (The Pf3K project, pilot data release 4, 2015) to dissect the prevalence, geographical distribution, and co-existing patterns of genetic markers associated with/enabling artemisinin resistance. We have identified several mutations which co-exist with the established markers of artemisinin resistance. Interestingly, K13-resistant parasites harbor α-ß hydrolase and putative HECT domain-containing protein genes with the maximum number of SNPs. We have also explored the multiple, publicly available transcriptomic datasets to identify genes from key biological pathways whose consistent deregulation may be contributing to the biology of resistant parasites. Surprisingly, glycolytic and pentose phosphate pathways were consistently downregulated in artemisinin-resistant parasites. Thus, this meta-analysis highlights the genetic and transcriptomic features of resistant parasites to propel further exploratory studies in the community to tackle artemisinin resistance.

3.
Int J Parasitol Drugs Drug Resist ; 16: 188-193, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34271323

RESUMEN

Plasmodium falciparum resistance to artemisinin-based combination therapy (ACT) is a global threat to malaria control and elimination efforts. Mutations in the P. falciparum kelch13 gene (Pfk13) that are associated with delayed parasite clearance have emerged on the Thai-Cambodian border since 2008. There is growing evidence of widespread Pfk13 mutations throughout South-East Asia and they have independently emerged in other endemic regions. In Papua New Guinea (PNG), Pfk13 "C580Y" mutant parasites with reduced in vitro sensitivity to artemisinin have been isolated in Wewak, a port town in East Sepik Province. However, the extent of any local spread of these mutant parasites in other parts of PNG is unknown. We investigated the prevalence of Pfk13 mutations in multiple malaria-endemic regions of PNG. P. falciparum isolates (n = 1152) collected between 2016 and 2018 and assessed for Pfk13 variation by sequencing. Of 663 high quality Pfk13 sequences a total of five variants were identified. They included C580Y, a mutation at a previously documented polymorphic locus: N499K, and three previously undescribed mutations: R471C, K586E and Y635C. All variants were found in single isolates, indicating that these Pfk13 mutations were rare in the areas surveyed. Notably, C580Y was absent from Maprik district, which neighbours Wewak where C580Y mutant parasites were previously identified. The single C580Y isolate was found in the port town of Lae, Morobe Province, a potential entry site for the importation of drug resistant parasites into PNG. Although sample size in this location was small (n = 5), our identification of a C580Y mutant in this second location is concerning, highlighting the urgent need for further surveillance in Lae. Other Pfk13 mutants were rare in PNG between 2016 and 2018. Continued surveillance for molecular markers of drug resistance is critically important to inform malaria control in PNG.


Asunto(s)
Antimaláricos , Artemisininas , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Mutación , Papúa Nueva Guinea/epidemiología , Plasmodium falciparum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA