Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2319971121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885375

RESUMEN

Many bird species commonly aggregate in flocks for reasons ranging from predator defense to navigation. Available evidence suggests that certain types of flocks-the V and echelon formations of large birds-may provide a benefit that reduces the aerodynamic cost of flight, whereas cluster flocks typical of smaller birds may increase flight costs. However, metabolic flight costs have not been directly measured in any of these group flight contexts [Zhang and Lauder, J. Exp. Biol. 226, jeb245617 (2023)]. Here, we measured the energetic benefits of flight in small groups of two or three birds and the requirements for realizing those benefits, using metabolic energy expenditure and flight position measurements from European Starlings flying in a wind tunnel. The starlings continuously varied their relative position during flights but adopted a V formation motif on average, with a modal spanwise and streamwise spacing of [0.81, 0.91] wingspans. As measured via CO2 production, flight costs for follower birds were significantly reduced compared to their individual solo flight benchmarks. However, followers with more positional variability with respect to leaders did less well, even increasing their costs above solo flight. Thus, we directly demonstrate energetic costs and benefits for group flight followers in an experimental context amenable to further investigation of the underlying aerodynamics, wake interactions, and bird characteristics that produce these metabolic effects.


Asunto(s)
Metabolismo Energético , Vuelo Animal , Estorninos , Animales , Vuelo Animal/fisiología , Metabolismo Energético/fisiología , Estorninos/fisiología , Estorninos/metabolismo , Aves/fisiología
2.
Proc Natl Acad Sci U S A ; 121(24): e2320517121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38848301

RESUMEN

Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.


Asunto(s)
Lagartos , Locomoción , Animales , Locomoción/fisiología , Lagartos/fisiología , Serpientes/fisiología , Fenómenos Biomecánicos , Modelos Biológicos
3.
Proc Natl Acad Sci U S A ; 121(32): e2318805121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39083417

RESUMEN

How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm Caenorhabditis elegans, we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top-down subdivision of the worm's foraging behavior, revealing both "runs-and-pirouettes" as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.


Asunto(s)
Conducta Animal , Caenorhabditis elegans , Cadenas de Markov , Animales , Caenorhabditis elegans/fisiología , Conducta Animal/fisiología , Modelos Biológicos , Movimiento/fisiología
4.
J Neurosci ; 44(31)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38969506

RESUMEN

Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.


Asunto(s)
Sinapsis Eléctricas , Síndrome del Cromosoma X Frágil , Neuronas Motoras , Proteínas de Pez Cebra , Pez Cebra , Animales , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/genética , Sinapsis Eléctricas/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Neuronas Motoras/fisiología , Modelos Animales de Enfermedad , Conexinas/genética , Conexinas/metabolismo , Animales Modificados Genéticamente , Hipercinesia/fisiopatología , Interneuronas/fisiología , Interneuronas/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
5.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38822661

RESUMEN

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Asunto(s)
Conducta Animal , Vida Libre de Gérmenes , Serotonina , Animales , Serotonina/metabolismo , Ratones , Masculino , Microbioma Gastrointestinal/fisiología , Encéfalo/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Ansiedad/metabolismo , Ansiedad/microbiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Ratones Endogámicos C57BL , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/genética , Colon/metabolismo , Colon/microbiología
6.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494889

RESUMEN

A recent neuroimaging study in adults found that the occipital place area (OPA)-a cortical region involved in "visually guided navigation" (i.e. moving about the immediately visible environment, avoiding boundaries, and obstacles)-represents visual information about walking, not crawling, suggesting that OPA is late developing, emerging only when children are walking, not beforehand. But when precisely does this "walking selectivity" in OPA emerge-when children first begin to walk in early childhood, or perhaps counterintuitively, much later in childhood, around 8 years of age, when children are adult-like walking? To directly test these two hypotheses, using functional magnetic resonance imaging (fMRI) in two groups of children, 5- and 8-year-olds, we measured the responses in OPA to first-person perspective videos through scenes from a "walking" perspective, as well as three control perspectives ("crawling," "flying," and "scrambled"). We found that the OPA in 8-year-olds-like adults-exhibited walking selectivity (i.e. responding significantly more to the walking videos than to any of the others, and no significant differences across the crawling, flying, and scrambled videos), while the OPA in 5-year-olds exhibited no walking selectively. These findings reveal that OPA undergoes protracted development, with walking selectivity only emerging around 8 years of age.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Niño , Preescolar , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Estimulación Luminosa/métodos , Caminata
7.
J Physiol ; 602(7): 1297-1311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493355

RESUMEN

The wide variation in muscle fibre type distribution across individuals, along with the very different energy consumption rates in slow versus fast muscle fibres, suggests that muscle fibre typology contributes to inter-individual differences in metabolic rate during exercise. However, this has been hard to demonstrate due to the gap between a single muscle fibre and full-body exercises. We investigated the isolated effect of triceps surae muscle contraction velocity on whole-body metabolic rate during cyclic contractions in individuals a priori selected for their predominantly slow (n = 11) or fast (n = 10) muscle fibre typology by means of proton magnetic resonance spectroscopy (1H-MRS). Subsequently, we examined their whole-body metabolic rate during walking and running at 2 m/s, exercises with comparable metabolic rates but distinct triceps surae muscle force and velocity demands (walking: low force, high velocity; running: high force, low velocity). Increasing triceps surae contraction velocity during cyclic contractions elevated net whole-body metabolic rate for both typology groups. However, the slow group consumed substantially less net metabolic energy at the slowest contraction velocity, but the metabolic difference between groups diminished at faster velocities. Consistent with the more economic force production during slow contractions, the slow group exhibited lower metabolic rates than the fast group while running, whereas metabolic rates were similar during walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rates. KEY POINTS: Muscle fibre typology is often suggested to affect whole-body metabolic rate, yet convincing in vivo evidence is lacking. Using isolated plantar flexor muscle contractions in individuals a priori selected for their predominantly slow or fast muscle fibre typology, we demonstrated that having predominantly slow muscle fibres provides a metabolic advantage during slow muscle contractions, but this benefit disappeared at faster contractions. We extended these results to full-body exercises, where we demonstrated that higher proportions of slow fibres associated with better economy during running but not when walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rate.


Asunto(s)
Contracción Muscular , Carrera , Humanos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas , Pierna , Carrera/fisiología
8.
J Physiol ; 602(9): 1987-2017, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593215

RESUMEN

When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9- to 13-week interval in seven adult cats (4 males and 3 females). We recorded reflex responses in ten hindlimb and five forelimb muscles bilaterally. After the first (right T5-T6) and second (left T10-T11) hemisections, coordination of the fore- and hindlimbs was altered and/or became less consistent. After the second hemisection, cats required balance assistance to perform quadrupedal locomotion. Short-latency reflex responses in homonymous and crossed hindlimb muscles largely remained unaffected after staggered hemisections. However, mid- and long-latency homonymous and crossed responses in both hindlimbs occurred less frequently after staggered hemisections. In forelimb muscles, homolateral and diagonal mid- and long-latency response occurrence significantly decreased after the first and second hemisections. In all four limbs, however, when present, short-, mid- and long-latency responses maintained their phase-dependent modulation. We also observed reduced durations of short-latency inhibitory homonymous responses in left hindlimb extensors early after the first hemisection and delayed short-latency responses in the right ipsilesional hindlimb after the first hemisection. Therefore, changes in cutaneous reflex responses correlated with impaired balance/stability and interlimb coordination during locomotion after spinal cord injury. Restoring reflex transmission could be used as a biomarker to facilitate locomotor recovery. KEY POINTS: Cutaneous afferent inputs coordinate muscle activity in the four limbs during locomotion when the foot dorsum contacts an obstacle. Thoracic spinal cord injury disrupts communication between spinal locomotor centres located at cervical and lumbar levels, impairing balance and limb coordination. We investigated cutaneous reflexes during quadrupedal locomotion by electrically stimulating the superficial peroneal nerve bilaterally, before and after staggered lateral thoracic hemisections of the spinal cord in cats. We showed a loss/reduction of mid- and long-latency responses in all four limbs after staggered hemisections, which correlated with altered coordination of the fore- and hindlimbs and impaired balance. Targeting cutaneous reflex pathways projecting to the four limbs could help develop therapeutic approaches aimed at restoring transmission in ascending and descending spinal pathways.


Asunto(s)
Miembro Posterior , Locomoción , Músculo Esquelético , Reflejo , Traumatismos de la Médula Espinal , Animales , Gatos , Miembro Posterior/inervación , Miembro Posterior/fisiología , Miembro Posterior/fisiopatología , Masculino , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Reflejo/fisiología , Locomoción/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Piel/inervación , Vértebras Torácicas , Miembro Anterior/fisiopatología , Miembro Anterior/fisiología , Estimulación Eléctrica
9.
Ecol Lett ; 27(2): e14389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38382913

RESUMEN

Metabolism underpins all life-sustaining processes and varies profoundly with body size, temperature and locomotor activity. A current theory explains some of the size-dependence of metabolic rate (its mass exponent, b) through changes in metabolic level (L). We propose two predictive advances that: (a) combine the above theory with the evolved avoidance of oxygen limitation in water-breathers experiencing warming, and (b) quantify the overall magnitude of combined temperatures and degrees of locomotion on metabolic scaling across air- and water-breathers. We use intraspecific metabolic scaling responses to temperature (523 regressions) and activity (281 regressions) in diverse ectothermic vertebrates (fish, reptiles and amphibians) to show that b decreases with temperature-increased L in water-breathers, supporting surface area-related avoidance of oxygen limitation, whereas b increases with activity-increased L in air-breathers, following volume-related influences. This new theoretical integration quantitatively incorporates different influences (warming, locomotion) and respiration modes (aquatic, terrestrial) on animal energetics.


Asunto(s)
Peces , Vertebrados , Animales , Temperatura , Tamaño Corporal , Oxígeno/fisiología
10.
J Neurophysiol ; 131(2): 321-337, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38198656

RESUMEN

There is a lack of experimental methods in genetically tractable mouse models to analyze the developmental period at which newborns mature weight-bearing locomotion. To overcome this deficit, we introduce methods to study l-3,4-dihydroxyphenylalanine (l-DOPA)-induced air-stepping in mice at postnatal day (P)7 and P10. Air-stepping is a stereotypic rhythmic behavior that resembles mouse walking overground locomotion but without constraints imposed by weight bearing, postural adjustments, or sensory feedback. We propose that air-stepping represents the functional organization of early spinal circuits coordinating limb movements. After subcutaneous injection of l-DOPA (0.5 mg/g), we recorded air-stepping movements in all four limbs and electromyographic (EMG) activity from ankle flexor (tibialis anterior, TA) and extensor (lateral gastrocnemius, LG) muscles. Using DeepLabCut pose estimation, we analyzed rhythmicity and limb coordination. We demonstrate steady rhythmic stepping of similar duration from P7 to P10 but with some fine-tuning of interlimb coordination with age. Hindlimb joints undergo a greater range of flexion at older ages, indicating maturation of flexion-extension cycles as the animal starts to walk. EMG recordings of TA and LG show alternation but with more focused activation particularly in the LG from P7 to P10. We discuss similarities to neonatal rat l-DOPA-induced air-stepping and infant assisted walking. We conclude that limb coordination and muscle activations recorded with this method represent basic spinal cord circuitry for limb control in neonates and pave the way for future investigations on the development of rhythmic limb control in genetic or disease models with correctly or erroneously developing motor circuitry.NEW & NOTEWORTHY We present novel methods to study neonatal air-stepping in newborn mice. These methods allow analyses at the onset of limb coordination during the period in which altricial species like rats, mice, and humans "learn" to walk. The methods will be useful to test a large variety of mutations that serve as models of motor disease in newborns or that are used to probe for specific circuit mechanisms that generate coordinated limb motor output.


Asunto(s)
Levodopa , Músculo Esquelético , Recién Nacido , Animales , Ratas , Ratones , Humanos , Animales Recién Nacidos , Levodopa/farmacología , Electromiografía , Músculo Esquelético/fisiología , Movimiento , Locomoción/fisiología , Miembro Posterior/fisiología
11.
J Neurophysiol ; 131(4): 678-688, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381551

RESUMEN

Despite abundant evidence that pain alters movement performance, considerably less is known about the potential effects of pain on motor learning. Some of the brain regions involved in pain processing are also responsible for specific aspects of motor learning, indicating that the two functions have the potential to interact, yet it is unclear if they do. In experiment 1, we compared the acquisition and retention of a novel locomotor pattern in young, healthy individuals randomized to either experience pain via capsaicin and heat applied to the lower leg during learning or no stimulus. On day 1, participants learned a new asymmetric walking pattern using distorted visual feedback, a paradigm known to involve mostly explicit re-aiming processes. Retention was tested 24 h later. Although there were no differences in day 1 acquisition between groups, individuals who experienced pain on day 1 demonstrated reduced retention on day 2. Furthermore, the degree of forgetting between days correlated with pain ratings during learning. In experiment 2, we examined the effects of a heat stimulus alone, which served as a control for (nonpainful) cutaneous stimulation, and found no effects on either acquisition or retention of learning. Thus, pain experienced during explicit, strategic locomotor learning interferes with motor memory consolidation processes and does so most likely through a pain mechanism and not an effect of distraction. These findings have important implications for understanding basic motor learning processes and for clinical rehabilitation, in which painful conditions are often treated through motor learning-based interventions.NEW & NOTEWORTHY Pain is a highly prevalent and burdensome experience that rehabilitation practitioners often treat using motor learning-based interventions. Here, we showed that experimental acute pain, but not a heat stimulus, during locomotor learning impaired 24-h retention of the newly learned walking pattern. The degree of retention loss was related to the perceived pain level during learning. These findings suggest important links between pain and motor learning that have significant implications for clinical rehabilitation.


Asunto(s)
Dolor Agudo , Consolidación de la Memoria , Humanos , Aprendizaje/fisiología , Caminata/fisiología , Movimiento
12.
J Neurophysiol ; 131(6): 997-1013, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691528

RESUMEN

During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.


Asunto(s)
Miembro Anterior , Miembro Posterior , Locomoción , Músculo Esquelético , Reflejo , Traumatismos de la Médula Espinal , Animales , Gatos , Miembro Posterior/fisiología , Miembro Anterior/fisiología , Reflejo/fisiología , Locomoción/fisiología , Músculo Esquelético/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Movimiento/fisiología , Femenino , Masculino , Piel/inervación
13.
J Neurophysiol ; 131(2): 338-359, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230872

RESUMEN

Complex locomotor patterns are generated by combination of muscle synergies. How genetic processes, early sensorimotor experiences, and the developmental dynamics of neuronal circuits contribute to the expression of muscle synergies remains elusive. We shed light on the factors that influence development of muscle synergies by studying subjects with spinal muscular atrophy (SMA, types II/IIIa), a disorder associated with degeneration and deafferentation of motoneurons and possibly motor cortical and cerebellar abnormalities, from which the afflicted would have atypical sensorimotor histories around typical walking onset. Muscle synergies of children with SMA were identified from electromyographic signals recorded during active-assisted leg motions or walking, and compared with those of age-matched controls. We found that the earlier the SMA onset age, the more different the SMA synergies were from the normative. These alterations could not just be explained by the different degrees of uneven motoneuronal losses across muscles. The SMA-specific synergies had activations in muscles from multiple limb compartments, a finding reminiscent of the neonatal synergies of typically developing infants. Overall, while the synergies shared between SMA and control subjects may reflect components of a core modular infrastructure determined early in life, the SMA-specific synergies may be developmentally immature synergies that arise from inadequate activity-dependent interneuronal sculpting due to abnormal sensorimotor experience and other factors. Other mechanisms including SMA-induced intraspinal changes and altered cortical-spinal interactions may also contribute to synergy changes. Our interpretation highlights the roles of the sensory and descending systems to the typical and abnormal development of locomotor modules.NEW & NOTEWORTHY This is likely the first report of locomotor muscle synergies of children with spinal muscular atrophy (SMA), a subject group with atypical developmental sensorimotor experience. We found that the earlier the SMA onset age, the more the subjects' synergies deviated from those of age-matched controls. This result suggests contributions of the sensory/corticospinal activities to the typical expression of locomotor modules, and how their disruptions during a critical period of development may lead to abnormal motor modules.


Asunto(s)
Músculo Esquelético , Atrofia Muscular Espinal , Niño , Lactante , Recién Nacido , Humanos , Músculo Esquelético/fisiología , Electromiografía , Caminata/fisiología , Neuronas Motoras/fisiología
14.
Neurobiol Dis ; 190: 106384, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135193

RESUMEN

External sensory cues can reduce freezing of gait in people with Parkinson's disease (PD), yet the role of the basal ganglia in these movements is unclear. We used microelectrode recordings to examine modulations in single unit (SU) and oscillatory local field potentials (LFP) during auditory-cued rhythmic pedaling movements of the feet. We tested five blocks of increasing cue frequencies (1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, and 3 Hz) in 24 people with PD undergoing deep brain stimulation surgery of the subthalamic nucleus (STN) or globus pallidus internus (GPi). Single unit firing and beta band LFPs (13-30 Hz) in response to movement onsets or cue onsets were examined. We found that the timing accuracy of foot pedaling decreased with faster cue frequencies. Increasing cue frequencies also attenuated firing rates in both STN and GPi neurons. Peak beta power in the GPi and STN showed different responses to the task. GPi beta power showed persistent suppression with fast cues and phasic modulation with slow cues. STN beta power showed enhanced beta synchronization following movement. STN beta power also correlated with rate of pedaling. Overall, we showed task-related responses in the GPi and STN during auditory-cued movements with differential roles in sensory and motor control. The results suggest a role for both input and output basal ganglia nuclei in auditory rhythmic pacing of gait-like movements in PD.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Globo Pálido/fisiología , Señales (Psicología) , Núcleo Subtalámico/fisiología , Neuronas/fisiología , Estimulación Encefálica Profunda/métodos
15.
Neurobiol Dis ; 192: 106422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286390

RESUMEN

Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Humanos , Ratones , Animales , Células de Purkinje/metabolismo , Ataxia de la Marcha/metabolismo , Ataxia de la Marcha/patología , Ratones Transgénicos , Ataxias Espinocerebelosas/genética , Neuronas/patología , Cerebelo/patología , Modelos Animales de Enfermedad
16.
Am Nat ; 204(2): 147-164, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008839

RESUMEN

AbstractPhenotypic macroevolutionary studies provide insight into how ecological processes shape biodiversity. However, the complexity of phenotype-ecology relationships underscores the importance of also validating phenotype-based ecological inference with direct evidence of resource use. Unfortunately, macroevolutionary-scale ecological studies are often hindered by the challenges of acquiring taxonomically and spatially representative ecological data for large and widely distributed clades. The South American cichlid fish tribe Geophagini represents a continentally distributed radiation whose early locomotor morphological divergence suggests habitat as one ecological correlate of diversification, but an association between locomotor traits and habitat preference has not been corroborated. Field notes accumulated over decades of collecting across South America provide firsthand environmental records that can be mined for habitat data in support of macroevolutionary ecological research. In this study, we applied a newly developed method to transform descriptive field note information into quantitative habitat data and used it to assess habitat preference and its relationship to locomotor morphology in Geophagini. Field note-derived data shed light on geophagine habitat use patterns and reinforced habitat as an ecological correlate of locomotor morphological diversity. Our work emphasizes the rich data potential of museum collections, including often-overlooked material such as field notes, for evolutionary and ecological research.


Asunto(s)
Cíclidos , Ecosistema , Fenotipo , Animales , Cíclidos/anatomía & histología , Cíclidos/fisiología , Locomoción , América del Sur , Evolución Biológica , Biodiversidad
17.
J Neuroinflammation ; 21(1): 95, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622726

RESUMEN

Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.


Asunto(s)
Microglía , Caracteres Sexuales , Animales , Femenino , Masculino , Ratones , Expresión Génica , Microglía/metabolismo
18.
Small ; 20(30): e2308352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38433397

RESUMEN

Magnetic hydrogel actuators are developed by incorporating magnetic fillers into the hydrogel matrix. Regulating the distribution of these fillers is key to the exhibited functionalities but is still challenging. Here a facile way to spatially synthesize ferrosoferric oxide (Fe3O4) microparticles in situ in a thermal-responsive hydrogel is reported. This method involves the photo-reduction of Fe3+ ions coordinated with carboxylate groups in polymer chains, and the hydrolytic reaction of the reduced Fe2+ ions with residual Fe3+ ions. By controlling the irradiation time and position, the concentration of Fe3O4 microparticles can be spatially controlled, and the resulting Fe3O4 pattern enables the hydrogel to exhibit complex locomotion driven by magnet, temperature, and NIR light. This method is convenient and extendable to other hydrogel systems to realize more complicated magneto-responsive functionalities.

19.
J Neurosci Res ; 102(4): e25332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646942

RESUMEN

The coordinated action of multiple leg joints and muscles is required even for the simplest movements. Understanding the neuronal circuits and mechanisms that generate precise movements is essential for comprehending the neuronal basis of the locomotion and to infer the neuronal mechanisms underlying several locomotor-related diseases. Drosophila melanogaster provides an excellent model system for investigating the neuronal circuits underlying motor behaviors due to its simple nervous system and genetic accessibility. This review discusses current genetic methods for studying locomotor circuits and their function in adult Drosophila. We highlight recently identified neuronal pathways that modulate distinct forward and backward locomotion and describe the underlying neuronal control of leg swing and stance phases in freely moving flies. We also report various automated leg tracking methods to measure leg motion parameters and define inter-leg coordination, gait and locomotor speed of freely moving adult flies. Finally, we emphasize the role of leg proprioceptive signals to central motor circuits in leg coordination. Together, this review highlights the utility of adult Drosophila as a model to uncover underlying motor circuitry and the functional organization of the leg motor system that governs correct movement.


Asunto(s)
Locomoción , Animales , Locomoción/fisiología , Neuronas/fisiología , Drosophila melanogaster/fisiología , Drosophila/fisiología
20.
Proc Biol Sci ; 291(2026): 20240820, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981526

RESUMEN

Unravelling the functional steps that underlie major transitions in the fossil record is a significant challenge for biologists owing to the difficulties of interpreting functional capabilities of extinct organisms. New computational modelling approaches provide exciting avenues for testing function in the fossil record. Here, we conduct digital bending experiments to reconstruct vertebral function in non-mammalian synapsids, the extinct forerunners of mammals, to provide insights into the functional underpinnings of the synapsid-mammal transition. We estimate range of motion and stiffness of intervertebral joints in eight non-mammalian synapsid species alongside a comparative sample of extant tetrapods, including salamanders, reptiles and mammals. We show that several key aspects of mammalian vertebral function evolved outside crown Mammalia. Compared to early diverging non-mammalian synapsids, cynodonts stabilized the posterior trunk against lateroflexion, while evolving axial rotation in the anterior trunk. This was later accompanied by posterior sagittal bending in crown mammals, and perhaps even therians specifically. Our data also support the prior hypothesis that functional diversification of the mammalian trunk occurred via co-option of existing morphological regions in response to changing selective demands. Thus, multiple functional and evolutionary steps underlie the origin of remarkable complexity in the mammalian backbone.


Asunto(s)
Evolución Biológica , Fósiles , Mamíferos , Columna Vertebral , Animales , Mamíferos/fisiología , Fósiles/anatomía & histología , Columna Vertebral/anatomía & histología , Columna Vertebral/fisiología , Fenómenos Biomecánicos , Rango del Movimiento Articular , Reptiles/fisiología , Reptiles/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA