RESUMEN
Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.
Asunto(s)
Interacciones Huésped-Patógeno , Humanos , Animales , Enfermedad de Lyme/microbiología , Enfermedades Transmitidas por Vectores , Interacciones Microbiota-Huesped , Borrelia burgdorferi/patogenicidad , Borrelia burgdorferi/metabolismoRESUMEN
Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.
Asunto(s)
Antibacterianos/uso terapéutico , Enfermedad de Lyme/tratamiento farmacológico , Animales , Borrelia burgdorferi/efectos de los fármacos , Calibración , Cinamatos/química , Cinamatos/farmacología , Cinamatos/uso terapéutico , Evaluación Preclínica de Medicamentos , Heces/microbiología , Femenino , Células HEK293 , Células Hep G2 , Humanos , Higromicina B/análogos & derivados , Higromicina B/química , Higromicina B/farmacología , Higromicina B/uso terapéutico , Enfermedad de Lyme/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Microbiota/efectos de los fármacosRESUMEN
Modern infectious disease outbreaks often involve changes in host tropism, the preferential adaptation of pathogens to specific hosts. The Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the molecular mechanisms of host tropism, because different variants of these tick-transmitted bacteria are distinctly maintained in rodents or bird reservoir hosts. To survive in hosts and escape complement-mediated immune clearance, Bb produces the outer surface protein CspZ that binds the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. Despite high sequence conservation, CspZ variants differ in human FH-binding ability. Together with the FH polymorphisms between vertebrate hosts, these findings suggest that minor sequence variation in this bacterial outer surface protein may confer dramatic differences in host-specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal structure of the CspZ-human FH complex, and identifying minor variation localized in the FH-binding interface yielding bird and rodent FH-specific binding activity that impacts infectivity. Swapping the divergent region in the FH-binding interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- and bird-specific early-onset dissemination. We further linked these loops and respective host-specific, complement-dependent phenotypes with distinct CspZ phylogenetic lineages, elucidating evolutionary mechanisms driving host tropism emergence. Our multidisciplinary work provides a novel molecular basis for how a single, short protein motif could greatly modulate pathogen host tropism.
Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Animales , Humanos , Evasión Inmune/genética , Filogenia , Tropismo Viral , Enfermedad de Lyme/microbiología , Proteínas Bacterianas/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Proteínas del Sistema Complemento/genética , Proteínas de la Membrana/metabolismoRESUMEN
The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi , Vía Clásica del Complemento , Humanos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Vía Clásica del Complemento/inmunología , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Unión ProteicaRESUMEN
In Borrelia burgdorferi, BB0556 was annotated as a conserved hypothetical protein. We herein investigated gene expression and the importance of this protein during infection. Our data support that bb0556 forms an operon with five other genes. A transcriptional start site and the associated σ70-type promoter were identified in the sequences upstream of bb0554, and luciferase reporter assays indicated that this promoter is functional in B. burgdorferi. Furthermore, the sequences upstream of bb0556 contain an internal promoter to drive gene expression. bb0556 expression was affected by various environmental factors such as changes in temperature, pH, and cell density when B. burgdorferi was grown in vitro. Surprisingly, significant differences were observed for bb0556 expression between B. burgdorferi strains B31-A3 and CE162, likely due to the different cis- and trans-acting factors in these strains. Moreover, bb0556 was found to be highly expressed by B. burgdorferi in infected mice tissues, suggesting that this gene plays an important role during animal infection. To test this hypothesis, we generated a bb0556 deletion mutant in a virulent bioluminescent B. burgdorferi strain. The mutant grew normally in the medium and displayed no defect in the resistance to environmental stresses such as reactive oxygen species, reactive nitrogen species, and osmotic stress. However, when the infectivity was compared between the mutant and its parental strain using in vivo bioluminescence imaging as well as analyses of spirochete recovery and bacterial burdens in animal tissues, our data showed that, contrary to the parental strain, the mutant was unable to infect mice. Complementation of bb0556 in cis fully restored the infectious phenotype to wild-type levels. Taken together, our study demonstrates that the hypothetical protein BB0556 is a novel virulence factor essential for B. burgdorferi mammalian infection.
RESUMEN
Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.
Asunto(s)
Ixodes , Lagartos , Enfermedad de Lyme , Animales , Lagartos/microbiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , Ixodes/microbiología , Humanos , Grupo Borrelia Burgdorferi/fisiología , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologíaRESUMEN
The PilZ domain-containing protein, PlzA, is the only known cyclic di-GMP binding protein encoded by all Lyme disease spirochetes. PlzA has been implicated in the regulation of many borrelial processes, but the effector mechanism of PlzA was not previously known. Here, we report that PlzA can bind DNA and RNA and that nucleic acid binding requires c-di-GMP, with the affinity of PlzA for nucleic acids increasing as concentrations of c-di-GMP were increased. A mutant PlzA that is incapable of binding c-di-GMP did not bind to any tested nucleic acids. We also determined that PlzA interacts predominantly with the major groove of DNA and that sequence length and G-C content play a role in DNA binding affinity. PlzA is a dual-domain protein with a PilZ-like N-terminal domain linked to a canonical C-terminal PilZ domain. Dissection of the domains demonstrated that the separated N-terminal domain bound nucleic acids independently of c-di-GMP. The C-terminal domain, which includes the c-di-GMP binding motifs, did not bind nucleic acids under any tested conditions. Our data are supported by computational docking, which predicts that c-di-GMP binding at the C-terminal domain stabilizes the overall protein structure and facilitates PlzA-DNA interactions via residues in the N-terminal domain. Based on our data, we propose that levels of c-di-GMP during the various stages of the enzootic life cycle direct PlzA binding to regulatory targets.
Asunto(s)
Proteínas Bacterianas , Borrelia burgdorferi , GMP Cíclico , Proteínas de Unión al ARN , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Unión Proteica , Dominios Proteicos , ADN Bacteriano/metabolismo , ADN Bacteriano/genéticaRESUMEN
Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.
Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Ratones , Animales , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiología , Receptor beta de LinfotoxinaRESUMEN
Persistent symptoms after an infection have been described for a number of infectious diseases, including Lyme disease. Studies have confirmed a moderate but consistent increase in the prevalence of such symptoms after Lyme disease, though the risk increase varies dependent on study design and the definition of persistent symptoms. Various possible predictors have been proposed, including a dysregulation of the immune system, metabolic changes, increased sensitization to pain signals, cognitive-behavioral factors, or-controversially-the persistence of the causative Borrelia bacteria or remnants thereof. Research on the precise roles of any of these factors is still ongoing. The lack of biological underpinning also makes it difficult to assess with certainty which patients' (generally nonspecific) persistent symptoms are etiologically related to the previous Lyme disease episode and which are not, particularly as these symptoms occur in the general population relatively frequently. The diagnostic criteria for posttreatment Lyme disease syndrome have shown their usefulness in both clinical and research settings but leave out a number of patients whose symptoms may fall just outside said criteria. Though the relationship between these symptoms and the previous Lyme disease episode may be very uncertain, we would argue that a uniform description and classification of these patients will aid in future research and patient management, regardless of the eventual underlying cause. Thus, we argue for an inclusive classification system for all persistent symptoms attributed to Lyme disease in order to promote validation of patient experiences and perspectives, while also maintaining scientific nuance regarding the very uncertain etiology of these patients' symptoms.
Asunto(s)
Enfermedad de Lyme , Síndrome de la Enfermedad Post-Lyme , Humanos , Enfermedad de Lyme/diagnósticoRESUMEN
Lyme disease is a zoonotic infection due to Ixodes tick-transmitted Borrelia burgdorferi sensu lato spirochetes and the most common vector-borne disease in the Northern Hemisphere. Despite nearly 50 years of investigation, the pathogenesis of this infection and its 2 main adverse outcomes-postinfectious Lyme arthritis and posttreatment Lyme disease syndrome-are incompletely understood. Advancement in sequencing and mass spectrometry have led to the rapid expansion of high-throughput omics technologies, including transcriptomics, metabolomics, and proteomics, which are now being applied to human diseases. This review summarizes findings of omics studies conducted on blood and tissue samples of people with acute Lyme disease and its postinfectious outcomes.
Asunto(s)
Enfermedad de Lyme , Metabolómica , Proteómica , Humanos , Enfermedad de Lyme/microbiología , Animales , Borrelia burgdorferi/genética , Genómica , Ixodes/microbiologíaRESUMEN
The family Borreliaceae contains arthropod-borne spirochetes that cause two widespread human diseases, Lyme disease and relapsing fever. Lyme disease is a subacute, progressive illness with variable stage and tissue manifestations. Relapsing fever is an acute febrile illness with prominent bacteremia that may recur and disseminate, particularly to the nervous system. Clinical heterogeneity is a hallmark of both diseases. While human clinical manifestations are influenced by a wide variety of factors, including immune status and host genetic susceptibility, there is evidence that Borreliaceae microbial factors influence the clinical manifestations of human disease caused by this family of spirochetes. Despite these associations, the spirochete genes that influence the severity and manifestations of human disease are, for the most part, unknown. Recent work has identified lineage-specific expansions of lipoproteome-rich accessory genome elements in virulent clones of Borrelia burgdorferi. Using publicly available genome assemblies, it is shown that all Borreliaceae lineages for which sufficient sequence data are available harbor a similar pattern of strongly structured, lineage-specific expansions in their accessory genomes, particularly among lipoproteins, and that this pattern holds across phylogenetic scales including genera, species, and genotypes. The relationships among pangenome elements suggest that infrequent episodes of marked genomic change followed by clonal expansion in geographically and enzootically structured populations may account for the unique lineage structure of Borreliaceae. This analysis informs future genotype-phenotype studies among Borreliaceae and lays a foundation for studies of individual gene function guided by phylogenetic patterns of conservation, diversification, gain, and/or loss.
Asunto(s)
Genoma Bacteriano , Filogenia , Humanos , Borrelia/genética , Borrelia/clasificación , Genómica , Enfermedad de Lyme/microbiologíaRESUMEN
Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.
Asunto(s)
Borrelia burgdorferi , Ixodes , Vacunas contra Enfermedad de Lyme , Enfermedad de Lyme , Enfermedad de Lyme/prevención & control , Enfermedad de Lyme/inmunología , Humanos , Animales , Borrelia burgdorferi/inmunología , Vacunas contra Enfermedad de Lyme/inmunología , Ixodes/microbiología , Vacunación , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Antígenos de Superficie/inmunología , Lipoproteínas/inmunologíaRESUMEN
In the 40 years since Steere and colleagues first described Lyme disease, the illness has increased in incidence and distribution to become the most common vector-borne disease in the United States. Public health officials have developed, implemented, and revised surveillance systems to describe and monitor the condition. Much has been learned about the epidemiology of the illness, despite practical and logistical constraints that have encumbered the collection and interpretation of surveillance data. Future development of automated data collection from electronic health records as a source of surveillance and clinical information will address practical challenges and help answer ongoing questions about complications and persistent symptoms. Robust surveillance will be essential to monitor the effectiveness and safety of future vaccines and other preventive measures.
Asunto(s)
Enfermedad de Lyme , Enfermedad de Lyme/epidemiología , Humanos , Estados Unidos/epidemiología , Historia del Siglo XX , Historia del Siglo XXI , Vigilancia de la Población , IncidenciaRESUMEN
Lyme arthritis (LA) was recognized as a separate entity in 1975 because of geographic clustering of children often diagnosed with juvenile rheumatoid arthritis in Lyme, Connecticut. After identification of erythema migrans as a common early feature of the illness, a prospective study of such patients implicated Ixodes scapularis ticks in disease transmission. In 1982, the causative agent, now called Borrelia burgdorferi, was cultured from these ticks and from Lyme disease patients. Subsequently, it was shown that LA could usually be treated successfully with oral antibiotics but sometimes required intravenous antibiotics. Yet, a small percentage of patients developed a dysregulated, proinflammatory immune response leading to persistent postinfectious synovitis with vascular damage, cytotoxic and autoimmune responses, and fibroblast proliferation, a lesion similar to that of rheumatoid arthritis. The message from postinfectious LA for other autoimmune arthritides is that a complex immune response with autoimmune features can begin with a microbial infection.
Asunto(s)
Enfermedad de Lyme , Enfermedad de Lyme/inmunología , Humanos , Animales , Historia del Siglo XX , Borrelia burgdorferi/inmunología , Historia del Siglo XXI , Antibacterianos/uso terapéutico , Ixodes/microbiologíaRESUMEN
Glycerol utilization as a carbohydrate source by Borreliella burgdorferi, the Lyme disease spirochete, is critical for its successful colonization and persistence in the tick vector. The expression of the glpFKD (glp) operon, which encodes proteins for glycerol uptake/utilization, must be tightly regulated during the enzootic cycle of B. burgdorferi. Previous studies have established that the second messenger cyclic di-GMP (c-di-GMP) is required for the activation of glp expression, while an alternative sigma factor RpoS acts as a negative regulator for glp expression. In the present study, we report identification of a cis element within the 5´ untranslated region of glp that exerts negative regulation of glp expression. Further genetic screen of known and predicted DNA-binding proteins encoded in the genome of B. burgdorferi uncovered that overexpressing Borrelia host adaptation regulator (BadR), a known global regulator, dramatically reduced glp expression. Similarly, the badR mutant significantly increased glp expression. Subsequent electrophoretic mobility shift assay analyses demonstrated that BadR directly binds to this cis element, thereby repressing glp independent of RpoS-mediated repression. The efficiency of BadR binding was further assessed in the presence of c-di-GMP and various carbohydrates. This finding highlights multi-layered positive and negative regulatory mechanisms employed by B. burgdorferi to synchronize glp expression throughout its enzootic cycle.IMPORTANCEBorreliella burgdorferi, the Lyme disease pathogen, must modulate its gene expression differentially to adapt successfully to its two disparate hosts. Previous studies have demonstrated that the glycerol uptake and utilization operon, glpFKD, plays a crucial role in spirochetal survival within ticks. However, the glpFKD expression must be repressed when B. burgdorferi transitions to the mammalian host. In this study, we identified a specific cis element responsible for the repression of glpFKD. We further pinpointed Borrelia host adaptation regulator as the direct binding protein to this cis element, thereby repressing glpFKD expression. This discovery paves the way for a deeper exploration of how zoonotic pathogens sense distinct hosts and switch their carbon source utilization during transmission.
Asunto(s)
Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Garrapatas , Animales , Borrelia/genética , Borrelia/metabolismo , Glicerol/metabolismo , Adaptación al Huésped , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Operón , Regulación Bacteriana de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismoRESUMEN
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , Animales , Humanos , Interacciones Huésped-Patógeno , Garrapatas/microbiologíaRESUMEN
Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.
Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Borrelia burgdorferi/metabolismo , Ligandos , Enfermedad de Lyme/genética , Enfermedad de Lyme/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fagosomas/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Proteínas de Unión al GTP rab , Animales , RatonesRESUMEN
Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.
Asunto(s)
Proteínas Bacterianas , Borrelia , Proteínas Inactivadoras del Complemento 1 , Enfermedad de Lyme , Fiebre Recurrente , Humanos , Proteínas Bacterianas/química , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Fiebre Recurrente/inmunología , Fiebre Recurrente/microbiología , Proteínas Inactivadoras del Complemento 1/química , Dominios Proteicos , Cristalografía por Rayos XRESUMEN
Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.
Asunto(s)
Lipoproteínas , Enfermedad de Lyme , Anticuerpos de Dominio Único , Animales , Perros , Humanos , Vacunas contra Enfermedad de Lyme , Epítopos , Anticuerpos Antibacterianos , Vacunas Bacterianas , Proteínas de la Membrana Bacteriana Externa , Enfermedad de Lyme/prevención & control , Antígenos de Superficie , Anticuerpos MonoclonalesRESUMEN
The causative agent of Lyme disease (LD), Borreliella burgdorferi, binds factor H (FH) and other complement regulatory proteins to its surface. B. burgdorferi B31 (type strain) encodes five FH-binding proteins (FHBPs): CspZ, CspA, and the OspE paralogs OspEBBN38, OspEBBL39, and OspEBBP38. This study assessed potential correlations between the production of individual FHBPs, FH-binding ability, and serum resistance using a panel of infectious B. burgdorferi clonal populations recovered from dogs. FHBP production was assessed in cultivated spirochetes and by antibody responses in naturally infected humans, dogs, and eastern coyotes (wild canids). FH binding specificity and sensitivity to dog and human serum were also assessed and compared. No correlation was observed between the production of individual FHBPs and FH binding with serum resistance, and CspA was determined to not be produced in animals. Notably, one or more clones isolated from dogs lacked CspZ or the OspE proteins (a finding confirmed by genome sequence determination) and did not bind FH derived from canines. The data presented do not support a correlation between FH binding and the production of individual FHBPs with serum resistance and infectivity. In addition, the limited number and polymorphic nature of cp32s in B. burgdorferi clone DRI85A that were identified through genome sequencing suggest no strict requirement for a defined set of these replicons for infectivity. This study reveals that the immune evasion mechanisms employed by B. burgdorferi are diverse, complex, and yet to be fully defined.