Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119656, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042082

RESUMEN

Anthropogenic actions have direct and indirect impacts on natural systems, leading to significant alterations in marine ecosystems worldwide. One of the most notable problems is species loss, as the disappearance of species from an area can compromise ecological functions. This is at the core of a severe biodiversity crisis. To address and reverse these processes, marine protected areas (MPAs) have been utilized as a crucial tool to mitigate species loss, increase biomass, and serve as a fisheries management tool. However, there is a lack of information assessing MPAs from the perspective of their contribution to maintaining ecological functions. In recent decades, functional diversity (FD) indices have been widely used to assess ecosystem functioning. In this paper, we conducted an assessment using a global database of reef fish abundance to analyze the effect of No-Take Zones (NTZ) on the FD and "true" diversity (TD) indices of tropical reef fish assemblages in seven tropical biogeographic regions. We found a significant protective effect for some indices, although these responses were dependent on the bioregion. At the bioregional level, NTZs included lower numbers of species and functional entities than open access areas. Consequently, the functional richness protected within these zones partially represented the functional diversity in each biogeographic province. However, smaller-scale functional diversity indices responded to NTZ protection depending on the bioregion. Therefore, these results reinforce that the assessed NTZs are responsive to the protection of functional diversity, although they are not sufficient for safeguarding ecosystem functions in tropical reefs. This highlights the importance of expanding the number of protection entities worldwide with management strategies focused on coral reef fish functionality, as well as effective local/regional assessments. Thus, a new paradigm is necessary in the planning and creation of MPAs to safeguard ecosystem functions, with a priority given to the protection of ecosystem functions and habitats.


Asunto(s)
Antozoos , Arrecifes de Coral , Nitrocompuestos , Tiazoles , Animales , Ecosistema , Conservación de los Recursos Naturales , Peces/fisiología , Biodiversidad
2.
J Anim Ecol ; 92(12): 2333-2347, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37843043

RESUMEN

Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.


Asunto(s)
Ecosistema , Gadus morhua , Animales , Clima , Isótopos , Conducta Espacial
3.
Proc Natl Acad Sci U S A ; 117(45): 28134-28139, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106411

RESUMEN

Marine protected areas (MPAs) are conservation tools that are increasingly implemented, with growing national commitments for MPA expansion. Perhaps the greatest challenge to expanded use of MPAs is the perceived trade-off between protection and food production. Since MPAs can benefit both conservation and fisheries in areas experiencing overfishing and since overfishing is common in many coastal nations, we ask how MPAs can be designed specifically to improve fisheries yields. We assembled distribution, life history, and fisheries exploitation data for 1,338 commercially important stocks to derive an optimized network of MPAs globally. We show that strategically expanding the existing global MPA network to protect an additional 5% of the ocean could increase future catch by at least 20% via spillover, generating 9 to 12 million metric tons more food annually than in a business-as-usual world with no additional protection. Our results demonstrate how food provisioning can be a central driver of MPA design, offering a pathway to strategically conserve ocean areas while securing seafood for the future.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Explotaciones Pesqueras , Seguridad Alimentaria , Alimentos Marinos , Animales , Peces , Humanos
4.
Proc Biol Sci ; 289(1987): 20221718, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382520

RESUMEN

Hunting and fishing are often size-selective, which favours slow body growth. In addition, fast growth rate has been shown to be positively correlated with behavioural traits that increase encounter rates and catchability in passive fishing gears such as baited traps. This harvest-induced selection should be effectively eliminated in no-take marine-protected areas (MPAs) unless strong density dependence results in reduced growth rates. We compared body growth of European lobster (Homarus gammarus) between three MPAs and three fished areas. After 14 years of protection from intensive, size-selective lobster fisheries, the densities in MPAs have increased considerably, and we demonstrate that females moult more frequently and grow more during each moult in the MPAs. A similar, but weaker pattern was evident for males. This study suggests that MPAs can shield a wild population from slow-growth selection, which can explain the rapid recovery of size structure following implementation. If slow-growth selection is a widespread phenomenon in fisheries, the effectiveness of MPAs as a management tool can be higher than currently anticipated.


Asunto(s)
Conservación de los Recursos Naturales , Caza , Animales , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Nephropidae , Peces
5.
Conserv Biol ; 36(2): e13807, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34312893

RESUMEN

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Tamaño Corporal , Explotaciones Pesqueras , Peces , Humanos
6.
Proc Natl Acad Sci U S A ; 116(12): 5319-5325, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30150404

RESUMEN

Most large-scale conservation policies are anticipated or announced in advance. This risks the possibility of preemptive resource extraction before the conservation intervention goes into force. We use a high-resolution dataset of satellite-based fishing activity to show that anticipation of an impending no-take marine reserve undermines the policy by triggering an unintended race-to-fish. We study one of the world's largest marine reserves, the Phoenix Islands Protected Area (PIPA), and find that fishers more than doubled their fishing effort once this area was earmarked for eventual protected status. The additional fishing effort resulted in an impoverished starting point for PIPA equivalent to 1.5 y of banned fishing. Extrapolating this behavior globally, we estimate that if other marine reserve announcements were to trigger similar preemptive fishing, this could temporarily increase the share of overextracted fisheries from 65% to 72%. Our findings have implications for general conservation efforts as well as the methods that scientists use to monitor and evaluate policy efficacy.


Asunto(s)
Conservación de los Recursos Naturales/legislación & jurisprudencia , Explotaciones Pesqueras/legislación & jurisprudencia , Biología Marina/legislación & jurisprudencia , Animales , Color , Recursos en Salud/legislación & jurisprudencia , Políticas
7.
Mar Policy ; 144: 105239, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35911785

RESUMEN

The responses of small-scale coastal fisheries to pauses in effort and trade are an important test of natural resource management theories with implications for the many challenges of managing common-pool resources. Three Covid-19 curfews provided a natural experiment to evaluate fisheries responses adjacent a marine reserve and in a management system that restricted small-mesh drag nets. Daily catch weights in ten fish landings were compared before and after the curfew period to test the catch-only hypothesis that the curfew would reduce effort and increase catch per unit effort, per area yields, and incomes. Interviews with key informants indicated that fisheries effort and trade were disrupted but less so in the gear-restricted rural district than the more urbanized reserve landing sites. The expected increase in catches and incomes was evident in some sites adjacent the reserve but not the rural gear restricted fisheries. Differences in compliance and effort initiated by the curfew, changes in gear, and various negative environmental conditions are among the explanations for the variable catch responses. Rates of change over longer periods in CPUE were stable among marine reserve adjacent landing sites but declined faster after the curfew in the gear-restricted fisheries. Two landing sites nearest the southern end of the reserve displayed a daily 45 % increase in CPUE, 25-30 % increase in CPUA, and a 45-56 % increase in incomes. Results suggest that recovering stocks will succeed where authorities can achieve compliance, near marine reserves, and fisheries lacking additional environmental stresses.

8.
Proc Biol Sci ; 288(1951): 20210458, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34004134

RESUMEN

How far do marine larvae disperse in the ocean? Decades of population genetic studies have revealed generally low levels of genetic structure at large spatial scales (hundreds of kilometres). Yet this result, typically based on discrete sampling designs, does not necessarily imply extensive dispersal. Here, we adopt a continuous sampling strategy along 950 km of coast in the northwestern Mediterranean Sea to address this question in four species. In line with expectations, we observe weak genetic structure at a large spatial scale. Nevertheless, our continuous sampling strategy uncovers a pattern of isolation by distance at small spatial scales (few tens of kilometres) in two species. Individual-based simulations indicate that this signal is an expected signature of restricted dispersal. At the other extreme of the connectivity spectrum, two pairs of individuals that are closely related genetically were found more than 290 km apart, indicating long-distance dispersal. Such a combination of restricted dispersal with rare long-distance dispersal events is supported by a high-resolution biophysical model of larval dispersal in the study area, and we posit that it may be common in marine species. Our results bridge population genetic studies with direct dispersal studies and have implications for the design of marine reserve networks.


Asunto(s)
Flujo Génico , Genética de Población , Animales , Humanos , Larva/genética , Mar Mediterráneo
9.
Proc Biol Sci ; 288(1949): 20210112, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33906403

RESUMEN

Although we are currently experiencing worldwide biodiversity loss, local species richness does not always decline under anthropogenic pressure. This conservation paradox may also apply in protected areas but has not yet received conclusive evidence in marine ecosystems. Here, we survey fish assemblages in six Mediterranean no-take reserves and their adjacent fishing grounds using environmental DNA (eDNA) while controlling for environmental conditions. We detect less fish species in marine reserves than in nearby fished areas. The paradoxical gradient in species richness is accompanied by a marked change in fish species composition under different managements. This dissimilarity is mainly driven by species that are often overlooked by classical visual surveys but detected with eDNA: cryptobenthic, pelagic, and rare fishes. These results do not negate the importance of reserves in protecting biodiversity but shed new light on how under-represented species groups can positively react to fishing pressure and how conservation efforts can shape regional biodiversity patterns.


Asunto(s)
ADN Ambiental , Ecosistema , Animales , Biodiversidad , Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Peces/genética
10.
Ecol Appl ; 31(1): e02224, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866333

RESUMEN

An influential paradigm in coral reef ecology is that fishing causes trophic cascades through reef fish assemblages, resulting in reduced herbivory and thus benthic phase shifts from coral to algal dominance. Few long-term field tests exist of how fishing affects the trophic structure of coral reef fish assemblages, and how such changes affect the benthos. Alternatively, benthic change itself may drive the trophic structure of reef fish assemblages. Reef fish trophic structure and benthic cover were quantified almost annually from 1983 to 2014 at two small Philippine islands (Apo, Sumilon). At each island a No-Take Marine Reserve (NTMR) site and a site open to subsistence reef fishing were monitored. Thirteen trophic groups were identified. Large planktivores often accounted for >50% of assemblage biomass. Significant NTMR effects were detected at each island for total fish biomass, but for only 2 of 13 trophic components: generalist large predators and large planktivores. Fishing-induced changes in biomass of these components had no effect on live hard coral (HC) cover. In contrast, HC cover affected biomass of 11 of 13 trophic components significantly. Positive associations with HC cover were detected for total fish biomass, generalist large predators, piscivores, obligate coral feeders, large planktivores, and small planktivores. Negative associations with HC cover were detected for large benthic foragers, detritivores, excavators, scrapers, and sand feeders. These associations of fish biomass to HC cover were most clear when environmental disturbances (e.g., coral bleaching, typhoons) reduced HC cover, often quickly (1-2 yr), and when HC recovered, often slowly (5-10 yr). As HC cover changed, the biomass of 11 trophic components of the fish assemblage changed. Benthic and fish assemblages were distinct at all sites from the outset, remaining so for 31 yr, despite differences in fishing pressure and disturbance history. HC cover alone explained ~30% of the variability in reef fish trophic structure, whereas fishing alone explained 24%. Furthermore, HC cover affected more trophic groups more strongly than fishing. Management of coral reefs must include measures to maintain coral reef habitats, not just measures to reduce fishing by NTMRs.


Asunto(s)
Antozoos , Animales , Biomasa , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Peces
11.
J Invertebr Pathol ; 186: 107524, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33359479

RESUMEN

Marine protected areas (MPAs) consist of various categories of safeguarded areas in the marine environment, from semi-protected areas to total no take zones. The reported effects of MPAs are overwhelmingly positive, with numerous reports of fish size (biomass), abundance (recovery) and diversity increases, however, literature is lacking on the role and consequences of MPAs on parasite and disease dynamics, and in particular, invertebrate health. The implementation of MPAs has been known to alter trophic cascades and community dynamics, and with invertebrates commonly at the base of these systems, it is vital that their status is investigated. Overcrowding in areas closed to fishing is known to have parasitological consequences in some scenarios, and land/water use change has been known to alter host and vector communities, possibly elevating disease risk. Equally, reserves can be used as tools for alleviating impacts of marine disease. This review aims to consolidate extant literature and provide a comprehensive viewpoint on how invertebrates (and their health status) can be affected by MPAs, which are increasingly being implemented based on the relative urgency now being placed on protecting global biodiversity. In highlighting the paucity of knowledge surrounding MPAs and disease, especially that of the unenigmatic invertebrate groups, this review, published in the Special Issue on 'Invertebrates as One Health Sentinels', provides an opportunity for wide dissemination and provocation of further research in this area.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Invertebrados/fisiología , Animales , Explotaciones Pesqueras , Caza
12.
Proc Natl Acad Sci U S A ; 115(27): E6116-E6125, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915066

RESUMEN

Coral reefs provide ecosystem goods and services for millions of people in the tropics, but reef conditions are declining worldwide. Effective solutions to the crisis facing coral reefs depend in part on understanding the context under which different types of conservation benefits can be maximized. Our global analysis of nearly 1,800 tropical reefs reveals how the intensity of human impacts in the surrounding seascape, measured as a function of human population size and accessibility to reefs ("gravity"), diminishes the effectiveness of marine reserves at sustaining reef fish biomass and the presence of top predators, even where compliance with reserve rules is high. Critically, fish biomass in high-compliance marine reserves located where human impacts were intensive tended to be less than a quarter that of reserves where human impacts were low. Similarly, the probability of encountering top predators on reefs with high human impacts was close to zero, even in high-compliance marine reserves. However, we find that the relative difference between openly fished sites and reserves (what we refer to as conservation gains) are highest for fish biomass (excluding predators) where human impacts are moderate and for top predators where human impacts are low. Our results illustrate critical ecological trade-offs in meeting key conservation objectives: reserves placed where there are moderate-to-high human impacts can provide substantial conservation gains for fish biomass, yet they are unlikely to support key ecosystem functions like higher-order predation, which is more prevalent in reserve locations with low human impacts.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales , Arrecifes de Coral , Peces/fisiología , Cadena Alimentaria , Animales , Humanos
13.
J Environ Manage ; 254: 109808, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31739093

RESUMEN

Marine Protected Areas (MPAs) are effective resource management and conservation measures, but their success is often hindered by non-compliant activities such as poaching. Understanding the risk factors and spatial patterns of poaching is therefore crucial for efficient law enforcement. Here, we conducted explanatory and predictive modelling of poaching from recreational fishers within no-take zones of Australia's Great Barrier Reef Marine Park (GBRMP) using Boosted Regression Trees (BRT). Combining patrol effort data, observed distribution of reported incidents, and spatially-explicit environmental and human risk factors, we modeled the occurrence probability of poaching incidents and mapped poaching risk at fine-scale. Our results: (i) show that fishing attractiveness, accessibility and fishing capacity play a major role in shaping the spatial patterns of poaching; (ii) revealed key interactions among these factors as well as tipping points beyond which poaching risk increased or decreased markedly; and (iii) highlight gaps in patrol effort that could be filled for improved resource allocation. The approach developed through this study provide a novel way to quantify the relative influence of multiple interacting factors in shaping poaching risk, and hold promises for replication across a broad range of marine or terrestrial settings.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Australia , Humanos
14.
Am Nat ; 193(3): 391-408, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30794455

RESUMEN

For many species, reproductive failure may occur if abundance drops below critical Allee thresholds for successful breeding, in some cases impeding recovery. At the same time, extreme environmental events can cause catastrophic collapse in otherwise healthy populations. Understanding what natural processes and management strategies may allow for persistence and recovery of natural populations is critical in the face of expected climate change scenarios of increased environmental variability. Using a spatially explicit continuous-size fishery model with stochastic dispersal parameterized for abalone-a harvested species with sedentary adults and a dispersing larval phase-we investigated whether the establishment of a system of marine protected areas (MPAs) can prevent population collapse, compared with nonspatial management when populations are affected by mass mortality from environmental shocks and subject to Allee effects. We found that MPA networks dramatically reduced the risk of collapse following catastrophic events (75%-90% mortality), while populations often continued to decline in the absence of spatial protection. Similar resilience could be achieved by closing the fishery immediately following mass mortalities but would necessitate long periods without catch and therefore economic income. For species with Allee effects, the use of protected areas can ensure persistence following mass mortality events while maintaining ecosystem services during the recovery period.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Gastrópodos , Modelos Teóricos , Animales , Dinámica Poblacional
15.
Proc Biol Sci ; 286(1901): 20190053, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014221

RESUMEN

Marine reserves can effectively restore harvested populations, and 'mega-reserves' increasingly protect large tracts of ocean. However, no method exists of monitoring ecological responses at this large scale. Herbivory is a key mechanism structuring ecosystems, and this consumer-resource interaction's strength on coral reefs can indicate ecosystem health. We screened 1372, and measured features of 214, reefs throughout Australia's Great Barrier Reef using high-resolution satellite imagery, combined with remote underwater videography and assays on a subset, to quantify the prevalence, size and potential causes of 'grazing halos'. Halos are known to be seascape-scale footprints of herbivory and other ecological interactions. Here we show that these halo-like footprints are more prevalent in reserves, particularly older ones (approx. 40 years old), resulting in predictable changes to reef habitat at scales visible from space. While the direct mechanisms for this pattern are relatively clear, the indirect mechanisms remain untested. By combining remote sensing and behavioural ecology, our findings demonstrate that reserves can shape large-scale habitat structure by altering herbivores' functional importance, suggesting that reserves may have greater value in restoring ecosystems than previously appreciated. Additionally, our results show that we can now detect macro-patterns in reef species interactions using freely available satellite imagery. Low-cost, ecosystem-level observation tools will be critical as reserves increase in number and scope; further investigation into whether halos may help seems warranted. Significance statement: Marine reserves are a widely used tool to mitigate fishing impacts on marine ecosystems. Predicting reserves' large-scale effects on habitat structure and ecosystem functioning is a major challenge, however, because these effects unfold over longer and larger scales than most ecological studies. We use a unique approach merging remote sensing and behavioural ecology to detect ecosystem change within reserves in Australia's vast Great Barrier Reef. We find evidence of changes in reefs' algal habitat structure occurring over large spatial (thousands of kilometres) and temporal (40+ years) scales, demonstrating that reserves can alter herbivory and habitat structure in predictable ways. This approach demonstrates that we can now detect aspects of reefs' ecological responses to protection even in remote and inaccessible reefs globally.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Parques Recreativos , Queensland
16.
Ecol Appl ; 29(6): e01949, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31188493

RESUMEN

Adaptive management of marine protected areas (MPAs) requires developing methods to evaluate whether monitoring data indicate that they are performing as expected. Modeling the expected responses of targeted species to an MPA network, with a clear timeline for those expectations, can aid in the development of a monitoring program that efficiently evaluates expectations over appropriate time frames. Here, we describe the expected trajectories in abundance and biomass following MPA implementation for populations of 19 nearshore fishery species in California. To capture the process of filling in the age structure truncated by fishing, we used age-structured population models with stochastic larval recruitment to predict responses to MPA implementation. We implemented both demographically open (high larval immigration) and closed (high self-recruitment) populations to model the range of possible trajectories as they depend on recruitment dynamics. From these simulations, we quantified the time scales over which anticipated increases in abundance and biomass inside MPAs would become statistically detectable. Predicted population biomass responses range from little change, for species with low fishing rates, to increasing by a factor of nearly seven, for species with high fishing rates before MPA establishment. Increases in biomass following MPA implementation are usually greater in both magnitude and statistical detectability than increases in abundance. For most species, increases in abundance would not begin to become detectable for at least 10 years after implementation. Overall, these results inform potential indicator metrics (biomass), potential indicator species (those with a high fishing : natural mortality ratio), and time frame (>10 yr) for MPA monitoring assessment as part of the adaptive management process.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Biomasa , California , Peces , Dinámica Poblacional
17.
Ecol Appl ; 29(5): e01905, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30985954

RESUMEN

Marine reserve networks are increasingly implemented to conserve biodiversity and enhance the persistence and resilience of exploited species and ecosystems. However, the efficacy of marine reserve networks in frequently disturbed systems, such as coral reefs, has rarely been evaluated. Here we analyze a well-mixed larval pool model and a spatially explicit model based on a well-documented coral trout (Plectropomus spp.) metapopulation in the Great Barrier Reef Marine Park, Australia, to determine the effects of marine reserve coverage and placement (in relation to larval connectivity and disturbance heterogeneity) on the temporal stability of fisheries yields and population biomass in environmentally disturbed systems. We show that marine reserves can contribute to stabilizing fishery yield while increasing metapopulation persistence, irrespective of whether reserves enhance or diminish average fishery yields. However, reserve placement and the level of larval connectivity among subpopulations were important factors affecting the stability and sustainability of fisheries and fish metapopulations. Protecting a mix of disturbed and non-disturbed reefs, rather than focusing on the least-disturbed habitats, was the most consistently beneficial approach across a range of dispersal and reserve coverage scenarios. Placing reserves only in non-disturbed areas was the most beneficial for biomass enhancement, but had variable results for fisheries and could potentially destabilize yields in systems with well-mixed larval or those that are moderately fished. We also found that focusing protection on highly disturbed areas could actually increase variability in yields and biomass, especially when degraded reef reserves were distant and poorly connected to the meta-population. Our findings have implications for the design and implementation of reserve networks in the presence of stochastic, patchy environmental disturbances.


Asunto(s)
Arrecifes de Coral , Explotaciones Pesqueras , Animales , Australia , Conservación de los Recursos Naturales , Ecosistema , Peces
18.
Conserv Biol ; 33(3): 580-589, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30318640

RESUMEN

Seascape connectivity (landscape connectivity in the sea) can modify reserve performance in low-energy marine ecosystems (e.g., coral reefs, mangroves, and seagrass), but it is not clear whether similar spatial linkages also shape reserve effectiveness on high-energy, exposed coastlines. We used the surf zones of ocean beaches in eastern Australia as a model system to test how seascape connectivity and reserve attributes combine to shape conservation outcomes. Spatial patterns in fish assemblages were measured using baited remote underwater video stations in 12 marine reserves and 15 fished beaches across 2000 km of exposed coastline. Reserve performance was shaped by both the characteristics of reserves and the spatial properties of the coastal seascapes in which reserves were embedded. Number of fish species and abundance of harvested fishes were highest in surf-zone reserves that encompassed >1.5 km of the surf zone; were located < 100 m to rocky headlands; and included pocket beaches in a heterogeneous seascape. Conservation outcomes for exposed coastlines may, therefore, be enhanced by prioritizing sufficiently large areas of seascapes that are strongly linked to abutting complementary habitats. Our findings have broader implications for coastal conservation planning. Empirical data to describe how the ecological features of high-energy shorelines influence conservation outcomes are lacking, and we suggest that seascape connectivity may have similar ecological effects on reserve performance on both sheltered and exposed coastlines.


Efectos de la Conectividad de Paisajes Marinos sobre el Desempeño de las Reservas a lo largo de Costas Expuestas Resumen La conectividad entre paisajes marinos puede modificar el desempeño de las reservas en los ecosistemas marinos de baja energía (p. ej.: arrecifes de coral, manglares, pastos marinos), pero no está claro si las conexiones espaciales similares también moldean la efectividad de las reservas en costas expuestas con alta energía. Usamos las zonas de rompimiento de las playas oceánicas en el este de Australia como sistema modelo para probar cómo la conectividad entre paisajes marinos y los atributos de la reserva se combinan para moldear los resultados de la conservación. Los patrones espaciales en los ensamblados de peces se midieron con estaciones remotas de video subacuático con carnada en doce reservas marinas y 15 playas a lo largo de 2000 km de costas expuestas. El desempeño de las reservas estuvo moldeado por las características de las reservas y las propiedades espaciales de los paisajes costeros en los cuales estaban insertadas las reservas. El número de especies de peces y la abundancia de peces recolectados fue mucho mayor en las reservas en las zonas de rompimiento que abarcaban >1.5 km de la zona de rompimiento; estaban localizadas a <100 m de cabos rocosos; e incluían playas pequeñas entre los cabos en un paisaje marino heterogéneo. Los resultados de conservación para las costas expuestas pueden, por lo tanto, mejorarse con la priorización suficiente de grandes áreas de paisajes marinos que están conectados fuertemente con hábitats complementarios colindantes. Nuestros hallazgos tienen consecuencias más generales para la planeación de la conservación costera. Los datos empíricos para describir cómo las características ecológicas de las costas con alta energía influyen sobre los resultados de conservación son muy pocos, y sugerimos que la conectividad entre paisajes marinos puede tener efectos ecológicos similares sobre el desempeño de las reservas en costas expuestas y resguardadas.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Arrecifes de Coral , Ecología , Peces
19.
Oecologia ; 190(2): 375-385, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31155681

RESUMEN

Emerging conservation efforts for the world's large predators may, if successful, restore natural predator-prey interactions. Marine reserves, where large predators tend to be relatively common, offer an experimental manipulation to investigate interactions between large-bodied marine predators and their prey. We hypothesized that southern stingrays-large, long-lived and highly interactive mesopredators-would invest in anti-predator behavior in marine reserves where predatory large sharks, the primary predator of stingrays, are more abundant. Specifically, we predicted southern stingrays in marine reserves would reduce the use of deep forereef habitats in the favor of shallow flats where the risk of shark encounters is lower. Baited remote underwater video was used to survey stingrays and reef sharks in flats and forereef habitats of two reserves and two fished sites in Belize. The interaction between "protection status" and "habitat" was the most important factor determining stingray presence. As predicted, southern stingrays spent more time interacting with baited remote underwater videos in the safer flats habitats, were more likely to have predator-inflicted damage inside reserves, and were less abundant in marine reserves but only in the forereef habitat. These results are consistent with a predation-sensitive habitat shift rather than southern stingray populations being reduced by direct predation from reef sharks. Our study provides evidence that roving predators can induce pronounced habitat shifts in prey that rely on crypsis and refuging, rather than active escape, in high-visibility, heterogeneous marine habitats. Given documented impacts of stingrays on benthic communities it is possible restoration of reef shark populations with reserves could induce reef ecosystem changes through behavior-mediated trophic cascades.


Asunto(s)
Ecosistema , Tiburones , Animales , Belice , Conducta Predatoria
20.
Proc Natl Acad Sci U S A ; 113(14): 3767-72, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26976560

RESUMEN

The effective management of marine fisheries is an ongoing challenge at the intersection of biology, economics, and policy. One way in which fish stocks-and their habitats-can be protected is through the establishment of marine reserves, areas that are closed to fishing. Although the potential economic benefits of such reserves have been shown for single-owner fisheries, their implementation quickly becomes complicated when more than one noncooperating harvester is involved in fishery management, which is the case on the high seas. How do multiple self-interested actors distribute their fishing effort to maximize their individual economic gains in the presence of others? Here, we use a game theoretic model to compare the effort distributions of multiple noncooperating harvesters with the effort distributions in the benchmark sole owner and open access cases. In addition to comparing aggregate rent, stock size, and fishing effort, we focus on the occurrence, size, and location of marine reserves. We show that marine reserves are a component of many noncooperative Cournot-Nash equilibria. Furthermore, as the number of harvesters increases, (i) both total unfished area and the size of binding reserves (those that actually constrain behavior) may increase, although the latter eventually asymptotically decreases; (ii) total rents and stock size both decline; and (iii) aggregate effort used (i.e., employment) can either increase or decrease, perhaps nonmonotonically.


Asunto(s)
Conservación de los Recursos Naturales/legislación & jurisprudencia , Conducta Cooperativa , Explotaciones Pesqueras/economía , Explotaciones Pesqueras/legislación & jurisprudencia , Animales , Ecosistema , Peces , Teoría del Juego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA