Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38442711

RESUMEN

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Asunto(s)
Ganglios Espinales , Células Receptoras Sensoriales , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Ganglios Espinales/citología , Células Receptoras Sensoriales/citología , Piel/inervación
2.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552612

RESUMEN

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Asunto(s)
Chlamydomonas , Cilios , Chlamydomonas/citología , Cilios/química , Cilios/ultraestructura , Flagelos , Polisacáridos , Proteínas
3.
Cell ; 186(16): 3368-3385.e18, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541195

RESUMEN

The properties of dorsal root ganglia (DRG) neurons that innervate the distal colon are poorly defined, hindering our understanding of their roles in normal physiology and gastrointestinal (GI) disease. Here, we report genetically defined subsets of colon-innervating DRG neurons with diverse morphologic and physiologic properties. Four colon-innervating DRG neuron populations are mechanosensitive and exhibit distinct force thresholds to colon distension. The highest threshold population, selectively labeled using Bmpr1b genetic tools, is necessary and sufficient for behavioral responses to high colon distension, which is partly mediated by the mechanosensory ion channel Piezo2. This Aδ-HTMR population mediates behavioral over-reactivity to colon distension caused by inflammation in a model of inflammatory bowel disease. Thus, like cutaneous DRG mechanoreceptor populations, colon-innervating mechanoreceptors exhibit distinct anatomical and physiological properties and tile force threshold space, and genetically defined colon-innervating HTMRs mediate pathophysiological responses to colon distension, revealing a target population for therapeutic intervention.


Asunto(s)
Ganglios Espinales , Mecanorreceptores , Mecanorreceptores/fisiología , Colon , Neuronas , Piel/inervación
4.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541196

RESUMEN

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Asunto(s)
Tránsito Gastrointestinal , Canales Iónicos , Mecanotransducción Celular , Animales , Humanos , Ratones , Digestión , Canales Iónicos/metabolismo , Neuronas/metabolismo
5.
Cell ; 185(11): 1960-1973.e11, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35551765

RESUMEN

During vertebrate embryogenesis, cell collectives engage in coordinated behavior to form tissue structures of increasing complexity. In the avian skin, assembly into follicles depends on intrinsic mechanical forces of the dermis, but how cell mechanics initiate pattern formation is not known. Here, we reconstitute the initiation of follicle patterning ex vivo using only freshly dissociated avian dermal cells and collagen. We find that contractile cells physically rearrange the extracellular matrix (ECM) and that ECM rearrangement further aligns cells. This exchange transforms a mechanically unlinked collective of dermal cells into a continuum, with coherent, long-range order. Combining theory with experiment, we show that this ordered cell-ECM layer behaves as an active contractile fluid that spontaneously forms regular patterns. Our study illustrates a role for mesenchymal dynamics in generating cell-level ordering and tissue-level patterning through a fluid instability-processes that may be at play across morphological symmetry-breaking contexts.


Asunto(s)
Matriz Extracelular , Folículo Piloso , Animales , Colágeno , Piel , Vertebrados
6.
Annu Rev Biochem ; 90: 507-534, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153212

RESUMEN

Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.


Asunto(s)
Descubrimiento de Drogas/métodos , Canales Iónicos/química , Canales Iónicos/fisiología , Mecanotransducción Celular/fisiología , Animales , Barorreflejo/fisiología , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Propiocepción/fisiología , Células Madre/fisiología , Tacto
7.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675500

RESUMEN

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Asunto(s)
Desarrollo Embrionario/genética , Mecanotransducción Celular/genética , Uniones Estrechas/genética , Proteína de la Zonula Occludens-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Unión Proteica , Uniones Estrechas/fisiología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
8.
Cell ; 178(4): 867-886.e24, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398341

RESUMEN

Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Agonistas del GABA/farmacología , Ácidos Isonicotínicos/farmacología , Fenotipo , Células Receptoras Sensoriales/efectos de los fármacos , Tacto/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Ansiedad/tratamiento farmacológico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Agonistas del GABA/uso terapéutico , Ácidos Isonicotínicos/uso terapéutico , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Inhibición Prepulso/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
9.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677517

RESUMEN

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Asunto(s)
Mecanotransducción Celular , Interferencia de ARN , Receptores Acoplados a Proteínas G/fisiología , Animales , Materiales Biocompatibles , Calcio/metabolismo , Línea Celular Tumoral , Células Endoteliales/fisiología , Endotelio Vascular/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/genética , Resistencia al Corte , Estrés Mecánico , Resistencia Vascular
10.
Physiol Rev ; 100(2): 725-803, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670612

RESUMEN

The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.


Asunto(s)
Señalización del Calcio , Mecanotransducción Celular , Nocicepción , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/metabolismo , Sensación Térmica , Animales , Canalopatías/metabolismo , Canalopatías/fisiopatología , Células Quimiorreceptoras/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/fisiopatología , Mecanorreceptores/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Dolor/fisiopatología , Termorreceptores/metabolismo
11.
J Cell Sci ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143856

RESUMEN

Fluid shear stress (FSS) from blood flow, sensed by the vascular endothelial cells (ECs) that line all blood vessels, regulates vascular development during embryogenesis, controls adult vascular physiology and determines the location of atherosclerotic plaque formation. While a number of papers that reported a critical role for cell-cell adhesions or adhesion receptors in these processes, a recent publication challenged this paradigm, presenting evidence that ECs can very rapidly align in fluid flow as single cells without cell-cell contacts. To address this controversy, four independent laboratories assessed EC alignment in fluid flow across a range of EC cell types. These studies demonstrate a strict requirement for cell-cell contact in shear stress sensing over timescales consistent with previous literature and inconsistent with the newly published data.

12.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38262725

RESUMEN

The sense of touch is crucial for cognitive, emotional, and social development and relies on mechanically activated (MA) ion channels that transduce force into an electrical signal. Despite advances in the molecular characterization of these channels, the physiological factors that control their activity are poorly understood. Here, we used behavioral assays, electrophysiological recordings, and various mouse strains (males and females analyzed separately) to investigate the role of the calmodulin-like Ca2+ sensor, caldendrin, as a key regulator of MA channels and their roles in touch sensation. In mice lacking caldendrin (Cabp1 KO), heightened responses to tactile stimuli correlate with enlarged MA currents with lower mechanical thresholds in dorsal root ganglion neurons (DRGNs). The expression pattern of caldendrin in the DRG parallels that of the major MA channel required for touch sensation, PIEZO2. In transfected cells, caldendrin interacts with and inhibits the activity of PIEZO2 in a manner that requires an alternatively spliced sequence in the N-terminal domain of caldendrin. Moreover, targeted genetic deletion of caldendrin in Piezo2-expressing DRGNs phenocopies the tactile hypersensitivity of complete Cabp1 KO mice. We conclude that caldendrin is an endogenous repressor of PIEZO2 channels and their contributions to touch sensation in DRGNs.


Asunto(s)
Canales Iónicos , Tacto , Animales , Femenino , Masculino , Ratones , Canales Iónicos/genética , Mecanotransducción Celular/fisiología , Neuronas/metabolismo , Tacto/fisiología
13.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36752106

RESUMEN

Cilia are surface-exposed organelles that provide motility and sensory functions for cells, and it is widely believed that mechanosensation can be mediated through cilia. Polycystin-1 and -2 (PC-1 and PC-2, respectively) are transmembrane proteins that can localize to cilia; however, the molecular mechanisms by which polycystins contribute to mechanosensation are still controversial. Studies detail two prevailing models for the molecular roles of polycystins on cilia; one stresses the mechanosensation capabilities and the other unveils their ligand-receptor nature. The discovery that polycystins interact with mastigonemes, the 'hair-like' protrusions of flagella, is a novel finding in identifying the interactors of polycystins in cilia. While the functions of polycystins proposed by both models may coexist in cilia, it is hoped that a precise understanding of the mechanism of action of polycystins can be achieved by uncovering their distribution and interacting factors inside cilia. This will hopefully provide a satisfying answer to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in PC-1 and PC-2. In this Review, we discuss the characteristics of polycystins in the context of cilia and summarize the functions of mastigonemes in unicellular ciliates. Finally, we compare flagella and molecular features of PC-2 between unicellular and multicellular organisms, with the aim of providing new insights into the ciliary roles of polycystins in general.


Asunto(s)
Cilios , Riñón Poliquístico Autosómico Dominante , Humanos , Cilios/metabolismo , Canales Catiónicos TRPP/genética , Riñón Poliquístico Autosómico Dominante/genética , Mutación
14.
Annu Rev Microbiol ; 74: 735-760, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32905753

RESUMEN

Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.


Asunto(s)
Adaptación Fisiológica/genética , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Transducción de Señal , Adaptación Fisiológica/fisiología , Bacterias/metabolismo , Biopelículas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Propiedades de Superficie , Simbiosis
15.
Proc Natl Acad Sci U S A ; 119(30): e2206433119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858457

RESUMEN

Some of the most spectacular examples of botanical carnivory-in which predator plants catch and digest animals presumably to supplement the nutrient-poor soils in which they grow-occur within the Droseraceae family. For example, sundews of the genus Drosera have evolved leaf movements and enzyme secretion to facilitate prey digestion. The molecular underpinnings of this behavior remain largely unknown; however, evidence suggests that prey-induced electrical impulses are correlated with movement and production of the defense hormone jasmonic acid (JA), which may alter gene expression. In noncarnivorous plants, JA is linked to electrical activity via changes in cytoplasmic Ca2+. Here, we find that dynamic Ca2+ changes also occur in sundew (Drosera spatulata) leaves responding to prey-associated mechanical and chemical stimuli. Furthermore, inhibition of these Ca2+ changes reduced expression of JA target genes and leaf movements following chemical feeding. Our results are consistent with the presence of a conserved Ca2+-dependent JA signaling pathway in the sundew feeding response and provide further credence to the defensive origin of plant carnivory.


Asunto(s)
Señalización del Calcio , Calcio , Planta Carnívora , Drosera , Animales , Calcio/metabolismo , Planta Carnívora/metabolismo , Ciclopentanos/metabolismo , Drosera/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(40): e2208027119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36166475

RESUMEN

Piezo proteins are mechanosensitive ion channels that can locally curve the membrane into a dome shape [Y. R. Guo, R. MacKinnon, eLife 6, e33660 (2017)]. The curved shape of the Piezo dome is expected to deform the surrounding lipid bilayer membrane into a membrane footprint, which may serve to amplify Piezo's sensitivity to applied forces [C. A. Haselwandter, R. MacKinnon, eLife 7, e41968 (2018)]. If Piezo proteins are embedded in lipid bilayer vesicles, the membrane shape deformations induced by the Piezo dome depend on the vesicle size. We employ here membrane elasticity theory to predict, with no free parameters, the shape of such Piezo vesicles outside the Piezo dome, and show that the predicted vesicle shapes agree quantitatively with the corresponding measured vesicle shapes obtained through cryoelectron tomography, for a range of vesicle sizes [W. Helfrich, Z. Naturforsch. C 28, 693-703 (1973)]. On this basis, we explore the coupling between Piezo and membrane shape and demonstrate that the features of the Piezo dome affecting Piezo's membrane footprint approximately follow a spherical cap geometry. Our work puts into place the foundation for deducing key elastic properties of the Piezo dome from membrane shape measurements and provides a general framework for quantifying how proteins deform bilayer membranes.


Asunto(s)
Canales Iónicos , Membrana Dobles de Lípidos , Membrana Celular/metabolismo , Elasticidad , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(40): e2208034119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36166476

RESUMEN

We show in the companion paper that the free membrane shape of lipid bilayer vesicles containing the mechanosensitive ion channel Piezo can be predicted, with no free parameters, from membrane elasticity theory together with measurements of the protein geometry and vesicle size [C. A. Haselwandter, Y. R. Guo, Z. Fu, R. MacKinnon, Proc. Natl. Acad. Sci. U.S.A., 10.1073/pnas.2208027119 (2022)]. Here we use these results to determine the force that the Piezo dome exerts on the free membrane and hence, that the free membrane exerts on the Piezo dome, for a range of vesicle sizes. From vesicle shape measurements alone, we thus obtain a force-distortion relationship for the Piezo dome, from which we deduce the Piezo dome's intrinsic radius of curvature, [Formula: see text] nm, and bending stiffness, [Formula: see text], in freestanding lipid bilayer membranes mimicking cell membranes. Applying these estimates to a spherical cap model of Piezo embedded in a lipid bilayer, we suggest that Piezo's intrinsic curvature, surrounding membrane footprint, small stiffness, and large area are the key properties of Piezo that give rise to low-threshold, high-sensitivity mechanical gating.


Asunto(s)
Canales Iónicos , Membrana Dobles de Lípidos , Membrana Celular/metabolismo , Elasticidad , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fenómenos Mecánicos , Mecanotransducción Celular
18.
J Physiol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456626

RESUMEN

Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39178024

RESUMEN

The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, as well as the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as PECAM-1, the extracellular glycocalyx and its components, and ion channels such as Piezo1. We delineate which molecules are truly mechanosenstive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.

20.
Chem Senses ; 492024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526180

RESUMEN

Oral tactile sensitivity underpins food texture perception, but few studies have investigated mechanoreception in oral tissues. During food consumption, oral tissues are exposed to a wide range of temperatures and chemical entities. The objective of the present study was to assess the influence of thermal sensations on lingual roughness sensitivity. Just-noticeable difference thresholds (JNDs) were determined using the staircase method for surface roughness from stainless steel coupons (Ra; 0.177-0.465 µm). Thresholds were assessed when cooling or heating the metal stimuli (n = 32 subjects). Compared to the JND threshold obtained at an ambient stimulus temperature (21 °C: 0.055 ±â€…0.010 µm), a cold (8 °C) temperature significantly (P = 0.019) reduced tongue sensitivity (i.e. increased JND) to surface roughness (0.109 ±â€…0.016 µm, respectively) whereas warm and hot temperatures had no significant effect (35 °C: 0.084 ±â€…0.012 µm; 45 °C: 0.081 ±â€…0.011 µm). To assess whether the effect of cooling on roughness thresholds is TRPM8-dependent, we collected roughness thresholds in a second cohort of subjects (n = 27) following the lingual application of the cooling compound Evercool 190 (24.3 µM). Interestingly, when Evercool 190 was used to elicit the cold sensation, lingual roughness JNDs were unaffected compared to the control application of water (EC: 0.112 ±â€…0.016 µm; water: 0.102 ±â€…0.017 µm; P = 0.604). That lingual roughness sensitivity is decreased by cold temperature, but not chemicals evoking cold sensations, suggests the mechanism underpinning thermal modulation is not TRPM8 dependent.


Asunto(s)
Frío , Calor , Humanos , Temperatura , Tacto , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA