Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Planta ; 260(1): 9, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795149

RESUMEN

MAIN CONCLUSION: The secondary metabolic conversion of monolignans to sesquilignans/dilignans was closely related to seed germination and seedling establishment in Arctium lappa. Arctium lappa plants are used as a kind of traditional Chinese medicines for nearly 1500 years, and so far, only a few studies have put focus on the key secondary metabolic changes during seed germination and seedling establishment. In the current study, a combined approach was used to investigate the correlation among secondary metabolites, plant hormone signaling, and transcriptional profiles at the early critical stages of A. lappa seed germination and seedling establishment. Of 50 metabolites in methonolic extracts of A. lappa samples, 35 metabolites were identified with LC-MS/MS and 15 metabolites were identified with GC-MS. Their qualitative properties were examined according to the predicted chemical structures. The quantitative analysis was performed for deciphering their metabolic profiles, discovering that the secondary metabolic conversion from monolignans to sesquilignans/dilignans was closely correlated to the initiation of A. lappa seed germination and seedling establishment. Furthermore, the critical transcriptional changes in primary metabolisms, translational regulation at different cellular compartments, and multiple plant hormone signaling pathways were revealed. In addition, the combined approach provides unprecedented insights into key regulatory mechanisms in both gene transcription and secondary metabolites besides many known primary metabolites during seed germination of an important traditional Chinese medicinal plant species. The results not only provide new insights to understand the regulation of key medicinal components of 'ARCTII FRUCTUS', arctiin and arctigenin at the stages of seed germination and seedling establishment, but also potentially spur the development of seed-based cultivation in A. lappa plants.


Asunto(s)
Arctium , Germinación , Lignanos , Semillas , Arctium/genética , Arctium/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Lignanos/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas , Espectrometría de Masas en Tándem , Lignina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Metabolismo Secundario
2.
Plant J ; 110(5): 1516-1528, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35322494

RESUMEN

Sustainable production of chemicals and improving these biosources by engineering metabolic pathways to create efficient plant-based biofactories relies on the knowledge of available chemical/biosynthetic diversity present in the plant. Nicotiana species are well known for their amenability towards transformation and other new plant breeding techniques. The genus Nicotiana is primarily known through Nicotiana tabacum L., the source of tobacco leaves and all respective tobacco products. Due to the prevalence of the latter, N. tabacum and related Nicotiana species are one of the most extensively studied plants. The majority of studies focused solely on N. tabacum or other individual species for chemotyping. The present study analysed a diversity panel including 17 Nicotiana species and six accessions of Nicotiana benthamiana and created a data set that effectively represents the chemotype core collection of the genus Nicotiana. The utilisation of several analytical platforms and previously published libraries/databases enabled the identification and measurement of over 360 metabolites of a wide range of chemical classes as well as thousands of unknowns with dedicated spectral and chromatographic properties.


Asunto(s)
Nicotiana , Fitomejoramiento , Redes y Vías Metabólicas , Nicotiana/genética , Nicotiana/metabolismo
3.
Transgenic Res ; 32(4): 265-278, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37166587

RESUMEN

Exhaustive analysis of genetically modified crops over multiple decades has increased societal confidence in the technology. New Plant Breeding Techniques are now emerging with improved precision and the ability to generate products containing no foreign DNA and mimic/replicate conventionally bred varieties. In the present study, metabolomic analysis was used to compare (i) tobacco genotypes with and without the CRISPR associated protein 9 (Cas9), (ii) tobacco lines with the edited and non-edited DE-ETIOLATED-1 gene without phenotype and (iii) leaf and fruit tissue from stable non-edited tomato progeny with and without the Cas9. In all cases, multivariate analysis based on the difference test using LC-HRMS/MS and GC-MS data indicated no significant difference in their metabolomes. The variations in metabolome composition that were evident could be associated with the processes of tissue culture regeneration and/or transformation (e.g. interaction with Agrobacterium). Metabolites responsible for the variance included quantitative changes of abundant, well characterised metabolites such as phenolics (e.g. chlorogenic acid) and several common sugars such as fructose. This study provides fundamental data on the characterisation of gene edited crops, that are important for the evaluation of the technology and its assessment. The approach also suggests that metabolomics could contribute to routine product-based analysis of crops/foods generated from New Plant Breeding approaches.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Fitomejoramiento , Metabolómica
4.
Pharmacol Res ; 188: 106645, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610695

RESUMEN

Current therapeutic drugs for ulcerative colitis (UC) remained inadequate due to drug dependence and unacceptable adverse events. Reactive oxygen species (ROS) played a critical role in the occurrence and development of UC, which most likely benefited from treatment in scavenging ROS. In this study, we developed a pH-sensitive molybdenum-based polyoxometalate (POM) nanocluster, which might contribute to site specific colonic delivery and enhance systemic efficacy of UC treatment. Our results demonstrated that POM displayed robust ROS scavenging ability in vitro. POM could significantly alleviate the enteric symptoms and inflammatory indicators in DSS-induced UC mouse models. Flow cytometry showed an effective diminishment of macrophages, neutrophils and T cells infiltration after POM administration in UC models. Also, for the first time, we demonstrated that POM interfered with metabolic pathway associated to oxidative stress and partially improved the abnormal production of intestinal metabolites in UC to some extent. Benefiting from the ROS scavenging ability, POM attenuated ferroptosis in DSS induced UC, as evidenced by increase of GSH, down-expression of GPX4 and improvement in mitochondrial morphological changes. Meanwhile, there were no side effects on normal tissues. Thus, our powerful therapeutic effects pioneered the application of POM for safer and more effective POM-based UC therapy.


Asunto(s)
Colitis Ulcerosa , Ferroptosis , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Molibdeno/efectos adversos , Colitis Ulcerosa/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Sulfato de Dextran , Modelos Animales de Enfermedad
5.
Molecules ; 28(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175169

RESUMEN

Coix lachryma-jobi L. is an excellent plant resource that has a concomitant function for medicine, foodstuff and forage in China. At present, the commonly used cultivar for both medicine and foodstuff is Xiaobaike, and the cultivar for foraging is Daheishan. However, differences in the internal composition of plants lead to the expression of different phenotypic traits. In order to comprehensively elucidate the differences in nutrient composition changes in Coix seeds, a non-targeted metabolomics method based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) was used to analyze the metabolic changes in Coix seeds at different developmental stages. An edible Coix relative (Xiaobaike) and a feeding Coix relative (Daheishan) were selected as the research subjects. In the metabolome analysis of Coix seed, 314 metabolites were identified and detected, among which organic acids, carbohydrates, lipids, nucleotides and flavonoids were the main components. As an important standard for evaluating the quality of Coix seed, seven lipids were detected, among which fatty acids included not only even-chain fatty acids, but also odd-chain fatty acids, which was the first time detecting a variety of odd-chain fatty acids in Coix seed. The analysis of the compound contents in edible and feeding-type Coix lachryma-jobi L. and the lipid content at the mature stage showed that, among them, arachidic acid, behenic acid, heptadecanoic acid, heneicosanoic acid and pristanic acid may be the key compounds affecting the lipid content. In addition, in the whole process of semen coicis maturation, edible and feeding Coix show similar trends, and changes in the third period show clear compounds in the opposite situation, suggesting that edible and feeding Coix not only guarantee the relative stability of species but also provide raw materials for genetic breeding. This study provides valuable information on the formation of the edible and medicinal qualities of Coix.


Asunto(s)
Coix , Humanos , Coix/química , Fitomejoramiento , Ácidos Grasos/metabolismo , Espectrometría de Masas , Nutrientes , Metabolómica
6.
J Sep Sci ; 45(14): 2746-2765, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35579471

RESUMEN

The liquid extraction surface analysis technique is a new high-throughput instrument for ambient mass spectrometry. The benefits of the liquid extraction surface analysis-mass spectrometry approach are the high throughput screening of samples and the absence of sample preparation. liquid extraction surface analysis-mass spectrometry also consumes less solvent for extraction, making it more environmentally friendly and there is no substrate restriction. It utilizes advanced instrumentation like the use of robotic pipettes, nanoelectrospray systems, electronspray ionization chips which makes it highly efficient. In recent years, liquid extraction surface analysis-mass spectrometry has seen widespread use in a variety of analytical fields including drug metabolite analysis, mapping drug distribution in tissues, protein and lipid characterization, etc. In this review, we have summarized the basic working principles of the liquid extraction surface analysis-mass spectrometry approach in detail along with a detailed description of the recently reported applications in the analysis of proteins, lipids, drugs and foods. The investigated analytes along with detection methodologies and significant outcomes of various research reports have been presented with the help of tables. This tool has also been utilized in clinical investigations of biological fluids, fingerprint analysis and authentication of agarwood.


Asunto(s)
Proteínas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas/métodos
7.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292920

RESUMEN

Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant's performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants.


Asunto(s)
Bibliotecas de Moléculas Pequeñas , Verduras , Humanos , Metabolómica/métodos , Productos Agrícolas/genética , Biomarcadores
8.
J Proteome Res ; 20(5): 2714-2724, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33856806

RESUMEN

The metabolic and bioactivity effects of Eurycoma longifolia (Eucalyptus longifolia) in obesity treatment were studied in mice fed with a high-fat diet using a metabolomics approach. Aqueous extracts of E. longifolia were obtained via grinding, dissolving, and freeze-drying. The hepatic steatosis effect of E. longifolia was characterized by hematoxylin and eosin histological staining. External performance of the obesity-alleviation effect was monitored by measuring body and food weight. In addition, the metabolomics analysis of the E. longifolia-mice interaction system was performed using the established platform combining liquid chromatography-tandem mass spectrometry with statistical analysis. The presence and spatial distribution patterns of differential molecules were further evaluated through desorption electrospray ionization-mass spectrometry imaging. The results showed that E. longifolia played a vital role in downregulating lipid accumulation (especially triacylglycerols) and fatty acids biosynthesis together with enhanced lipid decomposition and healing in Bagg albino mice. During such a process, E. longifolia mainly induced metabolomic alterations of amino acids, organic acids, phospholipids, and glycerolipids. Moreover, under the experimental concentrations, E. longifolia induced more fluctuations of aqueous-soluble metabolites in the plasma and lipids in the liver than in the kidneys. This study provides an advanced alternative to traditional E. longifolia-based studies for evaluating the metabolic effects and bioactivity of E. longifolia through metabolomics technology, revealing potential technological improvement and clinical application.


Asunto(s)
Eurycoma , Animales , Dieta Alta en Grasa/efectos adversos , Lípidos , Metabolómica , Ratones , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología
9.
Transgenic Res ; 30(3): 303-315, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33909228

RESUMEN

Over the recent years, Nicotiana benthamiana has gained great importance as a chassis for the production of high value, low volume pharmaceuticals and/or active pharmaceutical ingredients (APIs). The process involving infiltration of the N. benthamiana leaves with Agrobacterium spp, harbouring vectors with the gene of interest, facilitates transient expression. To date, little information is available on the effect of the agro-infiltration process on the metabolome of N. benthamiana, which is necessary to improve the process for large-scale, renewable manufacturing of high value compounds and medical products. Hence, the objective of the present study was to assess metabolic adaptation of N. benthamiana as a response to the presence of Agrobacterium. The present study elucidated changes of the steady-state metabolism in the agroinfiltrated leaf area, the area around the infection and the rest of the plant. Furthermore, the study discusses the phenotypic advantages of the N. benthamiana lab strain, optimised for agro-infiltration, compared to three other wild accessions. Results showed that the lab strain has a different metabolic composition and showed less alterations of the phenylpropanoid pathway and cell wall remodelling in the agroinfiltrated leaf areas, for example chlorogenic acid, cadaverine and C18:0-2-glycerol ester. In conclusion, both of these alterations present potential candidates to improve the phenotype of the N. benthamiana lab strain for a more efficient transient expression process.


Asunto(s)
Agrobacterium/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Agrobacterium/crecimiento & desarrollo , Pared Celular/genética , Pared Celular/metabolismo , Pared Celular/microbiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/microbiología , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/microbiología
10.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768988

RESUMEN

The complex pathology of Alzheimer's disease (AD) emphasises the need for comprehensive modelling of the disease, which may lead to the development of efficient treatment strategies. To address this challenge, we analysed transcriptome data of post-mortem human brain samples of healthy elders and individuals with late-onset AD from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) and Mayo Clinic (MayoRNAseq) studies in the AMP-AD consortium. In this context, we conducted several bioinformatics and systems medicine analyses including the construction of AD-specific co-expression networks and genome-scale metabolic modelling of the brain in AD patients to identify key genes, metabolites and pathways involved in the progression of AD. We identified AMIGO1 and GRPRASP2 as examples of commonly altered marker genes in AD patients. Moreover, we found alterations in energy metabolism, represented by reduced oxidative phosphorylation and ATPase activity, as well as the depletion of hexanoyl-CoA, pentanoyl-CoA, (2E)-hexenoyl-CoA and numerous other unsaturated fatty acids in the brain. We also observed that neuroprotective metabolites (e.g., vitamins, retinoids and unsaturated fatty acids) tend to be depleted in the AD brain, while neurotoxic metabolites (e.g., ß-alanine, bilirubin) were more abundant. In summary, we systematically revealed the key genes and pathways related to the progression of AD, gained insight into the crucial mechanisms of AD and identified some possible targets that could be used in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Adenosina Trifosfatasas/genética , Envejecimiento/genética , Encéfalo/metabolismo , Encéfalo/patología , Biología Computacional/métodos , Metabolismo Energético/genética , Perfilación de la Expresión Génica/métodos , Marcadores Genéticos/genética , Genoma Humano/genética , Humanos , Fosforilación Oxidativa , Transcriptoma/genética
11.
J Lipid Res ; 61(4): 580-586, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964762

RESUMEN

Analyzing global steroid metabolism in humans can shed light on the etiologies of steroid-related diseases. However, existing methods require large amounts of serum and lack the evaluation of accuracy. Here, we developed an LC/MS/MS method for the simultaneous quantification of 12 steroid hormones: testosterone, pregnenolone, progesterone, androstenedione, corticosterone, 11-deoxycortisol, cortisol, 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, estriol, and estradiol. Steroids and spiked internal standards in 100 µl serum were extracted by protein precipitation and liquid-liquid extraction. The organic phase was dried by evaporation, and isonicotinoyl chloride was added for steroid derivatization, followed by evaporation under nitrogen and redissolution in 50% methanol. Chromatographic separation was performed on a reverse-phase PFP column, and analytes were detected on a triple quadrupole mass spectrometer with ESI. The lower limits of quantification ranged from 0.005 ng/ml for estradiol to 1 ng/ml for cortisol. Apparent recoveries of steroids at high, medium, and low concentrations in quality control samples were between 86.4% and 115.0%. There were limited biases (-10.7% to 10.5%) between the measured values and the authentic values, indicating that the method has excellent reliability. An analysis of the steroid metabolome in pregnant women highlighted the applicability of the method in clinical serum samples. We conclude that the LC/MS/MS method reported here enables steroid metabolome analysis with high accuracy and reduced serum consumption, indicating that it may be a useful tool in both clinical and scientific laboratory research.


Asunto(s)
Análisis Químico de la Sangre/métodos , Cromatografía Liquida , Límite de Detección , Metabolómica/métodos , Esteroides/sangre , Esteroides/metabolismo , Espectrometría de Masas en Tándem/métodos , Métodos Analíticos de la Preparación de la Muestra , Femenino , Humanos , Embarazo , Solventes/química , Esteroides/aislamiento & purificación
12.
Neuroimage ; 221: 117160, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679251

RESUMEN

The use of hybrid PET/MR imaging facilitates the simultaneous investigation of challenge-related changes in ligand binding to neuroreceptors using PET, while concurrently measuring neuroactivation or blood flow with MRI. Having attained a steady state of the PET radiotracer using a bolus-infusion protocol, it is possible to observe alterations in ligand neuroreceptor binding through changes in distribution volumes. Here, we present an iterative procedure for establishing an administration scheme to obtain steady state [11C]flumazenil concentrations in grey matter in the human brain. In order to achieve a steady state in the shortest possible time, the bolus infusion ratio from a previous examination was adapted to fit the subsequent examination. 17 male volunteers were included in the study. Boli and infusions with different weightings were given to the subjects and were characterised by kbol values from 74 â€‹min down to 42 â€‹min. Metabolite analysis was used to ascertain the value of unmetabolised flumazenil in the plasma, and PET imaging was used to assess its binding in the grey matter. The flumazenil time-activity curves (TACs) in the brain were decomposed into activity contributions from pure grey and white matter and analysed for 12 â€‹vol of interest (VOIs). The curves highlighted a large variability in metabolic rates between the subjects, with kbol â€‹= â€‹54.3 â€‹min being a reliable value to provide flumazenil equilibrium conditions in the majority of the VOIs and cases. The distribution volume of flumazenil in all 12 VOIs was determined.


Asunto(s)
Radioisótopos de Carbono/administración & dosificación , Flumazenil , Moduladores del GABA , Sustancia Gris , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Células Receptoras Sensoriales , Sustancia Blanca , Adulto , Flumazenil/administración & dosificación , Flumazenil/sangre , Flumazenil/farmacocinética , Moduladores del GABA/administración & dosificación , Moduladores del GABA/sangre , Moduladores del GABA/farmacocinética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/efectos de los fármacos , Sustancia Gris/metabolismo , Humanos , Masculino , Imagen Multimodal , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/metabolismo , Adulto Joven
13.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33036987

RESUMEN

The application of starter is a common practice to accelerate and steer the pomegranate wine fermentation process. However, the use of starter needs a better understanding of the effect of the interaction between the starter and native microorganisms during alcoholic fermentation. In this study, high-throughput sequencing combined with metabolite analysis was applied to analyze the effect of commercial Saccharomyces cerevisiae inoculation on the native fungal community interaction and metabolism during pomegranate wine fermentation. Results showed that there were diverse native fungi in pomegranate juice, including Hanseniaspora uvarum, Hanseniaspora valbyensis, S. cerevisiae, Pichia terricola, and Candida diversa Based on ecological network analysis, we found that S. cerevisiae inoculation transformed the negative correlations into positive correlations among the native fungal communities and decreased the Granger causalities between native yeasts and volatile organic compounds. This might lead to decreased contents of isobutanol, isoamylol, octanoic acid, decanoic acid, ethyl laurate, ethyl acetate, ethyl hexadecanoate, phenethyl acetate, and 2-phenylethanol during fermentation. This study combined correlation and causality analysis to gain a more integrated understanding of microbial interaction and the fermentation process. It provided a new strategy to predict certain behaviors between inoculated and selected microorganisms and those coming directly from the fruit.IMPORTANCE Microbial interactions play an important role in flavor metabolism during traditional food and beverage fermentation. However, we understand little about how selected starters influence interactions among native microorganisms. In this study, we found that S. cerevisiae inoculation changed the interactions and metabolisms of native fungal communities during pomegranate wine fermentation. This study not only suggests that starter inoculation should take into account the positive features of starters but also characterizes the microbial interactions established among the starters and the native communities. It may be helpful to select appropriate starter cultures for winemakers to design different styles of wine.


Asunto(s)
Micobioma , Granada (Fruta)/metabolismo , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Disacáridos , Fermentación , Hongos/metabolismo , Glucuronatos , Secuenciación de Nucleótidos de Alto Rendimiento , Extracción en Fase Sólida
14.
Anal Bioanal Chem ; 412(17): 4127-4134, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32328692

RESUMEN

In this study, we demonstrated nano-flow injection analysis (nano-FIA) with quadrupole time-of-flight mass spectrometry (Q-TOFMS) for 17 highly polar intermediates produced during glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway (PPP). We optimized the analytical conditions for nano-flow injection/Q-TOFMS, and set the flow rate and ion source temperature to 1000 nL/min and 150 °C, respectively. Under optimal conditions, a single run was finished within 3 min, and the RSD value of 50 sequential injections was 4.2%. The method also showed quantitativity of four stable-isotope-labeled compounds (r2 > 0.99), demonstrating its robustness, high repeatability, and specificity. In addition, we compared three sample-preparation methods for rodent blood samples and found that protein precipitation with threefold methanol was the most effective. Finally, we applied the method to plasma samples from the serotonin syndrome (SS) model and control rats, the results of which were evaluated by principal component analysis (PCA). The two groups showed clearly separated PCA score plots, suggesting that the method could successfully catch the differences in metabolic profiles between SS and control rats. The results obtained from our new method were further validated by using the established gas chromatography/tandem mass spectrometry method, which demonstrated that there were good correlations between the two methods (R = 0.902 and 0.958 for lactic acid and malic acid, respectively, each at p < 0.001), thus proving the validity of our method. The method described here enables high-throughput analysis of metabolites and will be of use for the rapid analysis of metabolic profiles. Graphical abstract.


Asunto(s)
Análisis de Inyección de Flujo/instrumentación , Espectrometría de Masas/instrumentación , Metaboloma , Síndrome de la Serotonina/metabolismo , Animales , Ciclo del Ácido Cítrico , Análisis de Inyección de Flujo/economía , Análisis de Inyección de Flujo/métodos , Glucólisis , Masculino , Espectrometría de Masas/economía , Espectrometría de Masas/métodos , Ratones Endogámicos ICR , Vía de Pentosa Fosfato , Análisis de Componente Principal , Ratas , Síndrome de la Serotonina/sangre , Factores de Tiempo
15.
Plant J ; 93(5): 931-942, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29315972

RESUMEN

Wound-induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very-long-chain fatty acids, 1-alkanols, ω-hydroxy fatty acids and α,ω-dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound-induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD-treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD-treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound-induced suberization in potato.


Asunto(s)
Lípidos/biosíntesis , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lípidos/genética , Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/genética , Piridonas/farmacología , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/genética
16.
Virol J ; 16(1): 105, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426820

RESUMEN

BACKGROUND: The gut microbiome is closely associated with the health of the host; although the interaction between the bacterial microbiome and the whole virome has rarely been studied, it is likely of medical importance. Examination of the interactions between the gut bacterial microbiome and virome of rhesus monkey would significantly contribute to revealing the gut microbiome composition. METHODS: Here, we conducted a metagenomic analysis of the gut microbiome of rhesus monkeys in a longitudinal cohort treated with an antibiotic cocktail, and we documented the interactions between the bacterial microbiome and virome. The depletion of viral populations was confirmed at the species level by real-time PCR. We also detected changes in the gut metabolome by GC-MS and LC-MS. RESULTS: A majority of bacteria were depleted after treatment with antibiotics, and the Shannon diversity index decreased from 2.95 to 0.22. Furthermore, the abundance-based coverage estimator (ACE) decreased from 104.47 to 33.84, and the abundance of eukaryotic viruses also changed substantially. In the annotation, 6 families of DNA viruses and 1 bacteriophage family were present in the normal monkeys but absent after gut bacterial microbiome depletion. Intriguingly, we discovered that changes in the gut bacterial microbiome composition may promote changes in the gut virome composition, and tryptophan, arginine, and quinone may play roles in the interaction between the bacterial microbiome and virome. CONCLUSION: Our results indicated that the clearly altered composition of the virome was correlated with depletion in the bacterial community and that metabolites produced by bacteria possibly play important roles in the interaction.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbianas , Virus/aislamiento & purificación , Animales , Antibacterianos/administración & dosificación , Bacterias/clasificación , Heces/microbiología , Heces/virología , Estudios Longitudinales , Macaca mulatta/microbiología , Macaca mulatta/virología , Redes y Vías Metabólicas , Metaboloma , Metagenómica , Virus/clasificación
17.
Oecologia ; 189(1): 69-77, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30446844

RESUMEN

Global light pollution threatens to disturb numerous wildlife species, but impacts of artificial light will likely vary among species within a community. Thus, artificial lights may change the environment in such a way as to create winners and losers as some species benefit while others do not. Insectivorous bats are nocturnal and a good model to test for differential effects of light pollution on a single community. We used a physiological technique to address this community-level question by measuring plasma ß-hydroxybutyrate (a blood metabolite) concentrations from six species of insectivorous bats in lit and unlit conditions. We also recorded bat calls acoustically to measure activity levels between experimental conditions. Blood metabolite level and acoustic activity data suggest species-specific changes in foraging around lights. In red bats (Lasiurus borealis), ß-hydroxybutyrate levels at lit sites were highest early in the night before decreasing. Acoustic data indicate pronounced peaks in activity at lit sites early in the night. In red bats on dark nights and in the other species in this community, which seem to avoid lights, ß-hydroxybutyrate remained relatively constant. Our results suggest red bats are more willing to expend energy to actively forage around lights despite potential negative impacts, while other, generally rarer species avoid lit areas. Artificial light appears to have a bifurcating effect on bat communities, whereby some species take advantage of concentrated prey resources, yet most do not. Further, this may concentrate light-intolerant species into limited dark refugia, thereby increasing competition for depauperate, phototactic insect communities.


Asunto(s)
Quirópteros , Animales , Animales Salvajes , Contaminación Ambiental , Insectos , Especificidad de la Especie
18.
Biologicals ; 61: 44-51, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31399278

RESUMEN

Monitoring cell culture metabolites, including media components and cellular byproducts, during bio manufacturing is critical for gaining insights into cell growth, productivity and product quality. Historically, cell culture metabolite analysis was a complicated process requiring several orthogonal methods to cover the large number of metabolites with diverse properties over wide concentration ranges. These off-line analyses are time consuming and not suitable for real time bioreactor monitoring. In this study, we present a high-throughput LC-MS method with a 17-min cycle time that is capable of simultaneously monitoring 93 cell culture metabolites, including amino acids, nucleic acids, vitamins, sugars and others. This method has high precision and accuracy and has been successfully applied to the daily profiling of bioreactors and raw material qualification. Information obtained in these studies has been used to identify limiting amino acids during production, which guided adjustments to the feed strategy that prevented the potential misincorporation of amino acids. This type of metabolite profiling can be further utilized to build predictive process models for adaptive feedback control and pave the road for continuous manufacturing and real-time release testing.


Asunto(s)
Medios de Cultivo/análisis , Espectrometría de Masas , Metaboloma , Animales , Células CHO , Técnicas de Cultivo de Célula , Cromatografía Liquida , Cricetulus
19.
Mar Drugs ; 17(10)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31575010

RESUMEN

Chlorophenols (CPs) are environmental pollutants that are produced through various anthropogenic activities and introduced in the environment. Living organisms, including humans, are exposed to these toxic xenobiotics and suffer from adverse health effects. More specifically, 2,4-dichlorophenol (2,4-DCP) is released in high amounts in the environment and has been listed as a priority pollutant by the US Environmental Protection Agency. Bioremediation has been proposed as a sustainable alternative to conventional remediation methods for the detoxification of phenolic compounds. In this work, we studied the potential of fungal strains isolated as symbionts of marine invertebrates from the underexplored mesophotic coral ecosystems. Hence, the unspecific metabolic pathways of these fungal strains are being explored in the present study, using the powerful analytical capabilities of a UHPLC-HRMS/MS. The newly identified 2,4-DCP metabolites add significantly to the knowledge of the transformation of such pollutants by fungi, since such reports are scarce.


Asunto(s)
Organismos Acuáticos/microbiología , Clorofenoles/metabolismo , Hongos/metabolismo , Invertebrados/microbiología , Contaminantes Químicos del Agua/metabolismo , Animales , Antozoos/metabolismo , Biodegradación Ambiental , Ecosistema , Humanos , Redes y Vías Metabólicas/fisiología , Fenoles/metabolismo , Simbiosis/fisiología , Xenobióticos/metabolismo
20.
Molecules ; 24(2)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30641968

RESUMEN

Mentha species are well recognized for their medicinal and aromatic properties. The comprehensive metabolite profiles of nine Mentha species have been determined. The extracts of these Mentha species were also screened for antioxidant and free radical scavenging activities. Forty-seven hydrophilic and seventeen lipophilic compounds were identified and quantified from the selected Mentha species. Also, eleven phenolic compounds, riboflavin and eight carotenoids were present, and their composition and content varied among the various Mentha species. The different Mentha species exhibited a range of antioxidant potencies. Horse mint especially exhibited the strongest antioxidant capacities (1,1-diphenyl-2-picryl-hydrazyl (DPPH), hydrogen peroxide, and reducing power assay) among the nine Mentha species. A difference between different samples from the same species was not observed by multivariate analysis. A high correlation between metabolites involved in closely linked biosynthetic pathways has been indicated. The projection to latent structure method, using the partial least squares (PLS) method, was applied to predict antioxidant capacities based on the metabolite profiles of Mentha leaves. According to the PLS analysis, several carotenoid contents, such as E-ß-carotene, 9Z-ß-carotene, 13Z-ß-carotene and lutein, as well as phenolic compounds, showed a positive relationship in reducing the power of Mentha extracts. Horse mint is a good candidate because of its high antioxidant efficacy among the nine Mentha species included in the study.


Asunto(s)
Antioxidantes/metabolismo , Antioxidantes/farmacología , Mentha/metabolismo , Metaboloma , Metabolómica , Antioxidantes/química , Biología Computacional/métodos , Cromatografía de Gases y Espectrometría de Masas , Mentha/química , Metabolómica/métodos , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA