Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 535-558, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33556281

RESUMEN

Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Agrecanos/química , Agrecanos/genética , Agrecanos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión , Transporte Biológico , Calcio/metabolismo , Cardiolipinas/metabolismo , Secuencia Conservada , Citoplasma/metabolismo , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 74(5): 877-890.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31023583

RESUMEN

Endoplasmic reticulum (ER) stress and unfolded protein response are energetically challenging under nutrient stress conditions. However, the regulatory mechanisms that control the energetic demand under nutrient and ER stress are largely unknown. Here we show that ER stress and glucose deprivation stimulate mitochondrial bioenergetics and formation of respiratory supercomplexes (SCs) through protein kinase R-like ER kinase (PERK). Genetic ablation or pharmacological inhibition of PERK suppresses nutrient and ER stress-mediated increases in SC levels and reduces oxidative phosphorylation-dependent ATP production. Conversely, PERK activation augments respiratory SCs. The PERK-eIF2α-ATF4 axis increases supercomplex assembly factor 1 (SCAF1 or COX7A2L), promoting SCs and enhanced mitochondrial respiration. PERK activation is sufficient to rescue bioenergetic defects caused by complex I missense mutations derived from mitochondrial disease patients. These studies have identified an energetic communication between ER and mitochondria, with implications in cell survival and diseases associated with mitochondrial failures.


Asunto(s)
Factor de Transcripción Activador 4/genética , Metabolismo Energético/genética , Factor 2 Eucariótico de Iniciación/genética , Mitocondrias/genética , eIF-2 Quinasa/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Línea Celular , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Glucosa/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mutación Missense/genética , Nutrientes/metabolismo , Fosforilación , Factores de Empalme Serina-Arginina/genética , Transducción de Señal
3.
Hum Mol Genet ; 33(18): 1630-1641, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39230874

RESUMEN

Aminoacyl-transfer RiboNucleic Acid synthetases (ARSs) are essential enzymes that catalyze the attachment of each amino acid to their cognate tRNAs. Mitochondrial ARSs (mtARSs), which ensure protein synthesis within the mitochondria, are encoded by nuclear genes and imported into the organelle after translation in the cytosol. The extensive use of next generation sequencing (NGS) has resulted in an increasing number of variants in mtARS genes being identified and associated with mitochondrial diseases. The similarities between yeast and human mitochondrial translation machineries make yeast a good model to quickly and efficiently evaluate the effect of variants in mtARS genes. Genetic screening of patients with a clinical suspicion of mitochondrial disorders through a customized gene panel of known disease-genes, including all genes encoding mtARSs, led to the identification of missense variants in WARS2, NARS2 and RARS2. Most of them were classified as Variant of Uncertain Significance. We exploited yeast models to assess the functional consequences of the variants found in these genes encoding mitochondrial tryptophanyl-tRNA, asparaginyl-tRNA, and arginyl-tRNA synthetases, respectively. Mitochondrial phenotypes such as oxidative growth, oxygen consumption rate, Cox2 steady-state level and mitochondrial protein synthesis were analyzed in yeast strains deleted in MSW1, SLM5, and MSR1 (the yeast orthologues of WARS2, NARS2 and RARS2, respectively), and expressing the wild type or the mutant alleles. Pathogenicity was confirmed for most variants, leading to their reclassification as Likely Pathogenic. Moreover, the beneficial effects observed after asparagine and arginine supplementation in the growth medium suggest them as a potential therapeutic approach.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mitocondrias , Enfermedades Mitocondriales , Saccharomyces cerevisiae , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Enfermedades Mitocondriales/genética , Saccharomyces cerevisiae/genética , Mitocondrias/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación Missense
4.
Circ Res ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140440

RESUMEN

BACKGROUND: Transverse (t)-tubules drive the rapid and synchronous Ca2+ rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca2+ release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca2+. METHODS: HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patchclamp, Ca2+, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure. RESULTS: Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca2+ release in the cell interior. Systolic Ca2+, ICa-L, sarcoplasmic reticulum Ca2+ content, and SERCA function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca2+ transient, the rate of Ca2+ removal, and the peak L-type Ca2+ current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria. CONCLUSIONS: We show that recovery from HF restores atrial t-tubules, and this promotes recovery of ICa-L, sarcoplasmic reticulum Ca2+ content, and systolic Ca2+. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.

5.
Circulation ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686562

RESUMEN

BACKGROUND: Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS: Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS: METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS: Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.

6.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055214

RESUMEN

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
EMBO Rep ; 24(4): e55678, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36876467

RESUMEN

Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Animales , Humanos , ADN Mitocondrial/genética , Edición Génica/métodos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Enfermedades Mitocondriales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo
8.
J Biol Chem ; 299(1): 102797, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528058

RESUMEN

Twinkle is the ring-shaped replicative helicase within the human mitochondria with high homology to bacteriophage T7 gp4 helicase-primase. Unlike many orthologs of Twinkle, the N-terminal domain (NTD) of human Twinkle has lost its primase activity through evolutionarily acquired mutations. The NTD has no demonstrated activity thus far; its role has remained unclear. Here, we biochemically characterize the isolated NTD and C-terminal domain (CTD) with linker to decipher their contributions to full-length Twinkle activities. This novel CTD construct hydrolyzes ATP, has weak DNA unwinding activity, and assists DNA polymerase γ (Polγ)-catalyzed strand-displacement synthesis on short replication forks. However, CTD fails to promote multikilobase length product formation by Polγ in rolling-circle DNA synthesis. Thus, CTD retains all the motor functions but struggles to implement them for processive translocation. We show that NTD has DNA-binding activity, and its presence stabilizes Twinkle oligomerization. CTD oligomerizes on its own, but the loss of NTD results in heterogeneously sized oligomeric species. The CTD also exhibits weaker and salt-sensitive DNA binding compared with full-length Twinkle. Based on these results, we propose that NTD directly contributes to DNA binding and holds the DNA in place behind the central channel of the CTD like a "doorstop," preventing helicase slippages and sustaining processive unwinding. Consistent with this model, mitochondrial single-stranded DNA-binding protein (mtSSB) compensate for the NTD loss and partially restore kilobase length DNA synthesis by CTD and Polγ. The implications of our studies are foundational for understanding the mechanisms of disease-causing Twinkle mutants that lie in the NTD.


Asunto(s)
ADN Helicasas , Proteínas Mitocondriales , Humanos , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Primasa/genética , ADN Primasa/metabolismo , Replicación del ADN , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
9.
Neurobiol Dis ; 200: 106644, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173847

RESUMEN

Mitochondrial glutamyl-aminoacyl tRNA synthetase deficiency, stemming from biallelic mutations in the EARS2 gene, was first described in 2012. With <50 cases reported globally, this condition exhibits a distinct phenotype of neonatal or childhood-onset, often referred to as leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). It has also been one of the few reversible mitochondrial disorders described. The natural history of these patients is poorly documented, ranging from clinical and radiological improvement to early death. Herein, we detail three cases from our centre, including follow-up on the Portuguese patient reported by Steenweg et al., These cases illustrate the phenotypic spectrum: i) rapidly progressive neonatal presentation with lactic acidemia and corpus callosum agenesis, leading to early death; ii) early onset with a severe, slowly progressive course; iii) early onset with a milder phenotype, showing some improvement and mild neurological symptoms. Additionally, we conducted a systematic literature review on cases of EARS2-deficient patients, focusing on clinical manifestations, laboratory findings, radiological aspects, and disease progression over time, along with respective data analysis. "Patients with EARS2 deficiency typically present within the first year of life with a well-defined neurometabolic disorder picture, often including hypotonia and/or spasticity, along with neurodevelopmental delay or regression. There are no pathognomonic features specific to EARS2 deficiency, and no genotype-phenotype correlation has been identified." Comparing to initial characterization by Steenweg et al., this analysis reveals an expanded disease spectrum. We propose a novel strategy for clustering phenotypes into severe, moderate, or mild disease based on initial presentation, seemingly correlating with disease progression. The paucity of data on the disease's natural history highlights the need for a multicentric approach to enhance understanding and management. TAKE-HOME MESSAGE: Analysis of all cases published with EARS2 deficiency allows for establish disease spectrum and a novel strategy for clustering phenotypes which correlate to disease progression.

10.
Mol Genet Metab ; 142(3): 108510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843620

RESUMEN

BACKGROUND: Information about dysarthria and dysphagia in mitochondrial diseases (MD) is scarce. However, this knowledge is needed to identify speech and swallowing problems early, to monitor the disease course, and to develop and offer optimal treatment and support. This study therefore aims to examine the prevalence and severity of dysarthria and dysphagia in patients with MD and its relation to clinical phenotype and disease severity. Secondary aim is to determine clinically relevant outcome measures for natural history studies and clinical trials. METHODS: This retrospective cross-sectional medical record study includes adults (age ≥ 18 years) diagnosed with genetically confirmed MD who participated in a multidisciplinary admission within the Radboud center for mitochondrial medicine between January 2015 and April 2023. Dysarthria and dysphagia were examined by administering the Radboud dysarthria assessment, swallowing speed, dysphagia limit, test of mastication and swallowing solids (TOMASS), and 6-min mastication test (6MMT). The disease severity was assessed using the Newcastle mitochondrial disease scale for adults (NMDAS). RESULTS: The study included 224 patients with MD with a median age of 42 years of whom 37.5% were male. The pooled prevalence of dysarthria was 33.8% and of dysphagia 35%. Patients with MD showed a negative deviation from the norm on swallowing speed, TOMASS (total time) and the 6MMT. Furthermore, a significant moderate relation was found between the presence of dysarthria and the clinical phenotypes. There was a statistically significant difference in total time on the TOMASS between the clinical phenotypes. Finally, disease severity showed a significant moderate relation with the severity of dysarthria and a significant weak relation with the severity of dysphagia. CONCLUSION: Dysarthria and dysphagia occur in about one-third of patients with MD. It is important for treating physicians to pay attention to this subject because of the influence of both disorders on social participation and wellbeing. Referral to a speech and language therapist should therefore be considered, especially in patients with a more severe clinical phenotype. The swallowing speed, TOMASS and 6MMT are the most clinically relevant tests to administer.


Asunto(s)
Trastornos de Deglución , Disartria , Enfermedades Mitocondriales , Humanos , Trastornos de Deglución/etiología , Trastornos de Deglución/fisiopatología , Disartria/etiología , Disartria/fisiopatología , Masculino , Femenino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/fisiopatología , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Estudios Transversales , Anciano , Índice de Severidad de la Enfermedad , Prevalencia , Deglución , Adulto Joven , Fenotipo
11.
Mol Genet Metab ; 142(1): 108348, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387305

RESUMEN

PURPOSE: Optimizing individualized clinical care in heterogeneous rare disorders, such as primary mitochondrial disease (PMD), will require gaining more comprehensive and objective understanding of the patient experience by longitudinally tracking quantifiable patient-specific outcomes and integrating subjective data with clinical data to monitor disease progression and targeted therapeutic effects. METHODS: Electronic surveys of patient (and caregiver) reported outcome (PRO) measures were administered in REDCap within clinical domains commonly impaired in patients with PMD in the context of their ongoing routine care, including quality of life, fatigue, and functional performance. Descriptive statistics, group comparisons, and inter-measure correlations were used to evaluate system feasibility, utility of PRO results, and consistency across outcome measure domains. Real-time tracking and visualization of longitudinal individual-level and cohort-level data were facilitated by a customized data integration and visualization system, MMFP-Tableau. RESULTS: An efficient PRO electronic capture and analysis system was successfully implemented within a clinically and genetically heterogeneous rare disease clinical population spanning all ages. Preliminary data analyses demonstrated the flexibility of this approach for a range of PROs, as well as the value of selected PRO scales to objectively capture qualitative functional impairment in four key clinical domains. High inter-measure reliability and correlation were observed. Between-group analyses revealed that adults with PMD reported significantly worse quality of life and greater fatigue than did affected children, while PMD patients with nuclear gene disorders reported lower functioning relative to those with an mtDNA gene disorder in several clinical domains. CONCLUSION: Incorporation of routine electronic data collection, integration, visualization, and analysis of relevant PROs for rare disease patients seen in the clinical setting was demonstrated to be feasible, providing prospective and quantitative data on key clinical domains relevant to the patient experience. Further work is needed to validate specific PROs in diverse PMD patients and cohorts, and to formally evaluate the clinical impact and utility of harnessing integrated data systems to objectively track and integrate quantifiable PROs in the context of rare disease patient clinical care.


Asunto(s)
Enfermedades Mitocondriales , Medición de Resultados Informados por el Paciente , Calidad de Vida , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Masculino , Femenino , Adulto , Niño , Adolescente , Persona de Mediana Edad , Adulto Joven , Preescolar , Estudios Prospectivos , Lactante , Encuestas y Cuestionarios , Anciano , Fatiga , Enfermedades Raras/genética , Enfermedades Raras/terapia , Lagunas en las Evidencias
12.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38680020

RESUMEN

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Asunto(s)
Progresión de la Enfermedad , Complejo I de Transporte de Electrón , Interferón gamma , Enfermedad de Leigh , Animales , Ratones , Tronco Encefálico/patología , Tronco Encefálico/metabolismo , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Interferón gamma/metabolismo , Enfermedad de Leigh/patología , Enfermedad de Leigh/genética , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Clin Genet ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118480

RESUMEN

Mitochondrial diseases (MtDs) present diverse clinical phenotypes, yet large-scale studies are hindered by their rarity. This retrospective, multicenter study, conducted across five Chinese hospitals' neurology departments from 2009 to 2019, aimed to address this gap. Nationwide, 1351 patients were enrolled, with a median onset age of 14.0 (18.5) years. The predominant phenotype was mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) (45.0%). Mitochondrial DNA (mtDNA) mutations were prevalent (87.4%), with m.3243A>G being the most common locus (48.7%). Meanwhile, POLG mutations in nuclear DNA (nDNA) accounted for 16.5%. Comparative analysis based on age groups (with a cut-off at 14 years) revealed the highest prevalence of MELAS, with Leigh syndrome (LS) and chronic progressive external ophthalmoplegia (CPEO) being the second most common phenotypes in junior and senior groups, respectively. Notably, the most commonly mutated nuclear genes varied across age groups. In conclusion, MELAS predominated in this Chinese MtD cohort, underscored by m.3243A>G and POLG as principal mtDNA mutations and pathogenic nuclear genes. The phenotypic and genotypic disparities observed among different age cohorts highlight the complex nature of MtDs.

14.
J Inherit Metab Dis ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973597

RESUMEN

The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.

15.
Eur J Neurol ; 31(7): e16275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38576261

RESUMEN

BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. METHODS: A panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. RESULTS: A high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with γ-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. CONCLUSIONS: These consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy.


Asunto(s)
Anticonvulsivantes , Enfermedades Mitocondriales , Convulsiones , Humanos , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/terapia , Convulsiones/terapia , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Consenso , Epilepsia/terapia , Epilepsia/tratamiento farmacológico , Técnica Delphi
16.
Brain ; 146(5): 1804-1811, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349561

RESUMEN

Corpus callosum defects are frequent congenital cerebral disorders caused by mutations in more than 300 genes. These include genes implicated in corpus callosum development or function, as well as genes essential for mitochondrial physiology. However, in utero corpus callosum anomalies rarely raise a suspicion of mitochondrial disease and are characterized by a very large clinical heterogeneity. Here, we report a detailed pathological and neuro-histopathological investigation of nine foetuses from four unrelated families with prenatal onset of corpus callosum anomalies, sometimes associated with other cerebral or extra-cerebral defects. Next generation sequencing allowed the identification of novel pathogenic variants in three different nuclear genes previously reported in mitochondrial diseases: TIMMDC1, encoding a Complex I assembly factor never involved before in corpus callosum defect; MRPS22, a protein of the small mitoribosomal subunit; and EARS2, the mitochondrial tRNA-glutamyl synthetase. The present report describes the antenatal histopathological findings in mitochondrial diseases and expands the genetic spectrum of antenatal corpus callosum anomalies establishing OXPHOS function as an important factor for corpus callosum biogenesis. We propose that, when observed, antenatal corpus callosum anomalies should raise suspicion of mitochondrial disease and prenatal genetic counselling should be considered.


Asunto(s)
Cuerpo Calloso , Enfermedades Mitocondriales , Humanos , Femenino , Embarazo , Cuerpo Calloso/patología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Enfermedades Mitocondriales/genética , Mitocondrias/patología , Mutación , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales
17.
Intern Med J ; 54(3): 388-397, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37732891

RESUMEN

BACKGROUND: The complexities of mitochondrial disease make epidemiological studies challenging, yet this information is important in understanding the healthcare burden and addressing service and educational needs. Existing studies are limited to quaternary centres or focus on a single genotype or phenotype and estimate disease prevalence at 12.5 per 100 000. New Zealand's (NZ) size and partially integrated national healthcare system make it amenable to a nationwide prevalence study. AIM: To estimate the prevalence of molecularly confirmed and suspected mitochondrial disease on 31 December 2015 in NZ. METHODS: Cases were identified from subspecialists and laboratory databases and through interrogation of the Ministry of Health National Minimum Dataset with a focus on presentations between 2000 and 2015. Patient records were reviewed, and those with a diagnosis of 'mitochondrial disease' who were alive and residing in NZ on the prevalence date were included. These were divided into molecularly confirmed and clinically suspected cases. Official NZ estimated resident population data were used to calculate prevalence. RESULTS: Seven hundred twenty-three unique national health index numbers were identified. Five hundred five were excluded. The minimum combined prevalence for mitochondrial disease was 4.7 per 100 000 (95% confidence interval (CI): 4.1-5.4). The minimum prevalence for molecularly confirmed and suspected disease was 2.9 (95% CI 2.4-3.4) and 1.8 (95% CI 1.4-2.2) cases per 100 000 respectively. CONCLUSIONS: Within the limitations of this study, comparison to similar prevalence studies performed by specialist referral centres suggests mitochondrial disease is underdiagnosed in NZ. This highlights a need for improved education and referral pathways for mitochondrial disease in NZ.


Asunto(s)
Atención a la Salud , Humanos , Estudios Transversales , Nueva Zelanda/epidemiología , Prevalencia
18.
BMC Pediatr ; 24(1): 104, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341530

RESUMEN

BACKGROUND: Mitochondrial diseases are heterogeneous in terms of clinical manifestations and genetic characteristics. The dynamin 1-like gene (DNM1L) encodes dynamin-related protein 1 (DRP1), a member of the GTPases dynamin superfamily responsible for mitochondrial and peroxisomal fission. DNM1L variants can lead to mitochondrial fission dysfunction. CASE PRESENTATION: Herein, we report a distinctive clinical phenotype associated with a novel variant of DNM1L and review the relevant literature. A 5-year-old girl presented with paroxysmal hemiplegia, astigmatism, and strabismus. Levocarnitine and coenzyme Q10 supplement showed good efficacy. Based on the patient's clinical data, trio whole-exome sequencing (trio-WES) and mtDNA sequencing were performed to identify the potential causative genes, and Sanger sequencing was used to validate the specific variation in the proband and her family members. The results showed a novel de novo heterozygous nonsense variant in exon 20 of the DNM1L gene, c.2161C>T, p.Gln721Ter, which is predicted to be a pathogenic variant according to the ACMG guidelines. The proband has a previously undescribed clinical manifestation, namely hemiparesis, which may be an additional feature of the growing phenotypic spectrum of DNM1L-related diseases. CONCLUSION: Our findings elucidate a novel variant in DNM1L-related disease and reveal an expanding phenotypic spectrum associated with DNM1L variants. This report highlights the necessity of next generation sequencing for early diagnosis of patients, and that further clinical phenotypic and genotypic analysis may help to improve the understanding of DNM1L-related diseases.


Asunto(s)
Dinaminas , Proteínas Asociadas a Microtúbulos , Femenino , Humanos , Preescolar , Proteínas Asociadas a Microtúbulos/genética , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Fenotipo , Mitocondrias
19.
Cardiol Young ; : 1-4, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752301

RESUMEN

Hypertrophic cardiomyopathy in children has diverse causes. Mitochondrial diseases, a rare aetiology leading to cardiomyopathy in 20-40% of affected children, predominantly present as hypertrophic cardiomyopathy. Diagnosis is challenging due to inconsistent genotype-phenotype correlation, resulting in various clinical presentations. We present a case of a one-month-old infant with severe hypertrophic cardiomyopathy and cardiac tamponade. Genetic diagnosis revealed a Valyl-tRNA synthetase 2 (VARS2) gene mutation, linking it to mitochondrial encephalopathy-cardiomyopathy. This case highlights novel variants and expands the understanding of hypertrophic cardiomyopathy aetiology in infants.

20.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732047

RESUMEN

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón , Enfermedad de Leigh , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA