Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med Biol ; 69(10)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38604177

RESUMEN

Objective. To improve intravoxel incoherent motion imaging (IVIM) magnetic resonance Imaging quality using a new image denoising technique and model-independent parameterization of the signal versusb-value curve.Approach. IVIM images were acquired for 13 head-and-neck patients prior to radiotherapy. Post-radiotherapy scans were also acquired for five of these patients. Images were denoised prior to parameter fitting using neural blind deconvolution, a method of solving the ill-posed mathematical problem of blind deconvolution using neural networks. The signal decay curve was then quantified in terms of several area under the curve (AUC) parameters. Improvements in image quality were assessed using blind image quality metrics, total variation (TV), and the correlations between parameter changes in parotid glands with radiotherapy dose levels. The validity of blur kernel predictions was assessed by the testing the method's ability to recover artificial 'pseudokernels'. AUC parameters were compared with monoexponential, biexponential, and triexponential model parameters in terms of their correlations with dose, contrast-to-noise (CNR) around parotid glands, and relative importance via principal component analysis.Main results. Image denoising improved blind image quality metrics, smoothed the signal versusb-value curve, and strengthened correlations between IVIM parameters and dose levels. Image TV was reduced and parameter CNRs generally increased following denoising.AUCparameters were more correlated with dose and had higher relative importance than exponential model parameters.Significance. IVIM parameters have high variability in the literature and perfusion-related parameters are difficult to interpret. Describing the signal versusb-value curve with model-independent parameters like theAUCand preprocessing images with denoising techniques could potentially benefit IVIM image parameterization in terms of reproducibility and functional utility.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Relación Señal-Ruido , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia
2.
Phys Med Biol ; 69(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38513292

RESUMEN

Objective. To simultaneously deblur and supersample prostate specific membrane antigen (PSMA) positron emission tomography (PET) images using neural blind deconvolution.Approach. Blind deconvolution is a method of estimating the hypothetical 'deblurred' image along with the blur kernel (related to the point spread function) simultaneously. Traditionalmaximum a posterioriblind deconvolution methods require stringent assumptions and suffer from convergence to a trivial solution. A method of modelling the deblurred image and kernel with independent neural networks, called 'neural blind deconvolution' had demonstrated success for deblurring 2D natural images in 2020. In this work, we adapt neural blind deconvolution to deblur PSMA PET images while simultaneous supersampling to double the original resolution. We compare this methodology with several interpolation methods in terms of resultant blind image quality metrics and test the model's ability to predict accurate kernels by re-running the model after applying artificial 'pseudokernels' to deblurred images. The methodology was tested on a retrospective set of 30 prostate patients as well as phantom images containing spherical lesions of various volumes.Main results. Neural blind deconvolution led to improvements in image quality over other interpolation methods in terms of blind image quality metrics, recovery coefficients, and visual assessment. Predicted kernels were similar between patients, and the model accurately predicted several artificially-applied pseudokernels. Localization of activity in phantom spheres was improved after deblurring, allowing small lesions to be more accurately defined.Significance. The intrinsically low spatial resolution of PSMA PET leads to partial volume effects (PVEs) which negatively impact uptake quantification in small regions. The proposed method can be used to mitigate this issue, and can be straightforwardly adapted for other imaging modalities.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Masculino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA