Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.672
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 1-24, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220975

RESUMEN

This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.


Asunto(s)
Coenzimas/química , Enzimas/química , Mujeres Trabajadoras/historia , Biocatálisis , Selección de Profesión , Coenzimas/metabolismo , Pruebas de Enzimas , Enzimas/metabolismo , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Cinética , Teoría Cuántica
2.
Annu Rev Biochem ; 86: 567-583, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654325

RESUMEN

Multidrug resistance is a global threat as the clinically available potent antibiotic drugs are becoming exceedingly scarce. For example, increasing drug resistance among gram-positive bacteria is responsible for approximately one-third of nosocomial infections. As ribosomes are a major target for these drugs, they may serve as suitable objects for novel development of next-generation antibiotics. Three-dimensional structures of ribosomal particles from Staphylococcus aureus obtained by X-ray crystallography have shed light on fine details of drug binding sites and have revealed unique structural motifs specific for this pathogenic strain, which may be used for the design of novel degradable pathogen-specific, and hence, environmentally friendly drugs.


Asunto(s)
Antibacterianos/síntesis química , Proteínas Bacterianas/química , Diseño de Fármacos , Ribosomas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Cristalografía por Rayos X , Deinococcus/efectos de los fármacos , Deinococcus/genética , Deinococcus/metabolismo , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Ribosomas/metabolismo , Ribosomas/ultraestructura , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Thermus thermophilus/efectos de los fármacos , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
3.
Mol Cell ; 84(5): 854-866.e7, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38402612

RESUMEN

Deaminases have important uses in modification detection and genome editing. However, the range of applications is limited by the small number of characterized enzymes. To expand the toolkit of deaminases, we developed an in vitro approach that bypasses a major hurdle with their toxicity in cells. We assayed 175 putative cytosine deaminases on a variety of substrates and found a broad range of activity on double- and single-stranded DNA in various sequence contexts, including CpG-specific deaminases and enzymes without sequence preference. We also characterized enzyme selectivity across six DNA modifications and reported enzymes that do not deaminate modified cytosines. The detailed analysis of diverse deaminases opens new avenues for biotechnological and medical applications. As a demonstration, we developed SEM-seq, a non-destructive single-enzyme methylation sequencing method using a modification-sensitive double-stranded DNA deaminase. The streamlined protocol enables accurate, base-resolution methylome mapping of scarce biological material, including cell-free DNA and 10 pg input DNA.


Asunto(s)
Citosina Desaminasa , Epigenoma , ADN/genética , Citosina , ADN de Cadena Simple/genética , Citidina Desaminasa/genética
4.
Immunity ; 53(5): 1095-1107.e3, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33128877

RESUMEN

Developing effective strategies to prevent or treat coronavirus disease 2019 (COVID-19) requires understanding the natural immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8+ T cells of COVID-19 patients. In total, we identified 3-8 epitopes for each of the 6 most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8+ T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8+ T cell immunity to SARS-CoV-2.


Asunto(s)
Betacoronavirus/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Betacoronavirus/aislamiento & purificación , COVID-19 , Convalecencia , Coronavirus/inmunología , Infecciones por Coronavirus/diagnóstico , Proteínas de la Nucleocápside de Coronavirus , Mapeo Epitopo , Epítopos de Linfocito T , Femenino , Humanos , Epítopos Inmunodominantes , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/diagnóstico , Poliproteínas , SARS-CoV-2 , Proteínas Virales/inmunología , Adulto Joven
5.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662272

RESUMEN

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo , Extensión de la Cadena Peptídica de Translación , Factor 2 de Elongación Peptídica/metabolismo , Receptores de Glutamato Metabotrópico/biosíntesis , Animales , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Factor 2 de Elongación Peptídica/genética , Fosforilación , Receptores de Glutamato Metabotrópico/genética
6.
Mol Cell ; 81(6): 1160-1169.e5, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33503406

RESUMEN

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.


Asunto(s)
Modelos Moleculares , Tamoxifeno/química , Canales de Sodio Activados por Voltaje/química , Células HEK293 , Humanos
7.
Annu Rev Genomics Hum Genet ; 25(1): 421-438, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190912

RESUMEN

Manipulation of a patient's genome for therapeutic ends is being attempted through numerous methods, some of which have resulted in disease-modifying interventions. The much anticipated promise of somatic gene therapy is starting to pay off; however, there remain many scientific unknowns, including concerns about safety and durability. A significant ethical concern is that of access to these novel interventions, an issue that is normally framed in terms of the high costs of approved products. I describe how access issues permeate gene therapy long before there is any commercial product and how even upstream decisions-such as choices of indication to pursue, viral vector, and where to site a trial-have significant implications for access to resultant products in both the developmental and commercial stages.


Asunto(s)
Terapia Genética , Humanos , Terapia Genética/ética , Vectores Genéticos
8.
EMBO J ; 42(15): e112741, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37337907

RESUMEN

While extended loop extrusion across the entire Igh locus controls VH -DJH recombination, local regulatory sequences, such as the PAIR elements, may also activate VH gene recombination in pro-B-cells. Here, we show that PAIR-associated VH 8 genes contain a conserved putative regulatory element (V8E) in their downstream sequences. To investigate the function of PAIR4 and its V8.7E, we deleted 890 kb containing all 14 PAIRs in the Igh 5' region, which reduced distal VH gene recombination over a 100-kb distance on either side of the deletion. Reconstitution by insertion of PAIR4-V8.7E strongly activated distal VH gene recombination. PAIR4 alone resulted in lower induction of recombination, indicating that PAIR4 and V8.7E function as one regulatory unit. The pro-B-cell-specific activity of PAIR4 depends on CTCF, as mutation of its CTCF-binding site led to sustained PAIR4 activity in pre-B and immature B-cells and to PAIR4 activation in T-cells. Notably, insertion of V8.8E was sufficient to activate VH gene recombination. Hence, enhancers of the PAIR4-V8.7E module and V8.8E element activate distal VH gene recombination and thus contribute to the diversification of the BCR repertoire in the context of loop extrusion.


Asunto(s)
Células Precursoras de Linfocitos B , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Sitios de Unión , Recombinación Genética
9.
CA Cancer J Clin ; 70(1): 47-70, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31815293

RESUMEN

Historical advances in the care of patients with non-Hodgkin lymphoma (NHL) have been restricted largely to patients with B-cell lymphoma. The peripheral T-cell lymphomas (PTCLs), which are rare and heterogeneous in nature, have yet to experience the same degree of improvement in outcome over the past 20 to 30 years. It is estimated that there are approximately 80,000 and 14,000 cases, respectively, of NHL and Hodgkin lymphoma per year in the United States. As a subgroup of NHL, the PTCLs account for 6% to 10% of all cases of NHL, making them exceedingly rare. In addition, the World Health Organization 2017 classification describes 29 distinct subtypes of PTCL. This intrinsic diversity, coupled with its rarity, has stymied progress in the disease. In addition, most subtypes carry an inferior prognosis compared with their B-cell counterparts, an outcome largely attributed to the fact that most treatment paradigms for patients with PTCL have been derived from B-cell neoplasms, a radically different disease. In fact, the first drug ever approved for patients with PTCL was approved only a decade ago. The plethora of recent drug approvals in PTCL, coupled with a deeper understanding of the molecular pathogenesis of the disease, has stimulated the field to pursue new avenues of research that are now largely predicated on the development of novel, targeted small molecules, which include a host of epigenetic modifiers and biologics. There is an expectation these advances may begin to favorably challenge the chemotherapy paradigms that have been used in the T-cell malignancies.


Asunto(s)
Antineoplásicos/uso terapéutico , Linfoma de Células T Periférico/tratamiento farmacológico , Estadificación de Neoplasias , Humanos , Linfoma de Células T Periférico/patología , Pronóstico
10.
Hum Mol Genet ; 33(18): 1630-1641, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39230874

RESUMEN

Aminoacyl-transfer RiboNucleic Acid synthetases (ARSs) are essential enzymes that catalyze the attachment of each amino acid to their cognate tRNAs. Mitochondrial ARSs (mtARSs), which ensure protein synthesis within the mitochondria, are encoded by nuclear genes and imported into the organelle after translation in the cytosol. The extensive use of next generation sequencing (NGS) has resulted in an increasing number of variants in mtARS genes being identified and associated with mitochondrial diseases. The similarities between yeast and human mitochondrial translation machineries make yeast a good model to quickly and efficiently evaluate the effect of variants in mtARS genes. Genetic screening of patients with a clinical suspicion of mitochondrial disorders through a customized gene panel of known disease-genes, including all genes encoding mtARSs, led to the identification of missense variants in WARS2, NARS2 and RARS2. Most of them were classified as Variant of Uncertain Significance. We exploited yeast models to assess the functional consequences of the variants found in these genes encoding mitochondrial tryptophanyl-tRNA, asparaginyl-tRNA, and arginyl-tRNA synthetases, respectively. Mitochondrial phenotypes such as oxidative growth, oxygen consumption rate, Cox2 steady-state level and mitochondrial protein synthesis were analyzed in yeast strains deleted in MSW1, SLM5, and MSR1 (the yeast orthologues of WARS2, NARS2 and RARS2, respectively), and expressing the wild type or the mutant alleles. Pathogenicity was confirmed for most variants, leading to their reclassification as Likely Pathogenic. Moreover, the beneficial effects observed after asparagine and arginine supplementation in the growth medium suggest them as a potential therapeutic approach.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mitocondrias , Enfermedades Mitocondriales , Saccharomyces cerevisiae , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Enfermedades Mitocondriales/genética , Saccharomyces cerevisiae/genética , Mitocondrias/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación Missense
11.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38555470

RESUMEN

Single-cell RNA sequencing has achieved massive success in biological research fields. Discovering novel cell types from single-cell transcriptomics has been demonstrated to be essential in the field of biomedicine, yet is time-consuming and needs prior knowledge. With the unprecedented boom in cell atlases, auto-annotation tools have become more prevalent due to their speed, accuracy and user-friendly features. However, existing tools have mostly focused on general cell-type annotation and have not adequately addressed the challenge of discovering novel rare cell types. In this work, we introduce scNovel, a powerful deep learning-based neural network that specifically focuses on novel rare cell discovery. By testing our model on diverse datasets with different scales, protocols and degrees of imbalance, we demonstrate that scNovel significantly outperforms previous state-of-the-art novel cell detection models, reaching the most AUROC performance(the only one method whose averaged AUROC results are above 94%, up to 16.26% more comparing to the second-best method). We validate scNovel's performance on a million-scale dataset to illustrate the scalability of scNovel further. Applying scNovel on a clinical COVID-19 dataset, three potential novel subtypes of Macrophages are identified, where the COVID-related differential genes are also detected to have consistent expression patterns through deeper analysis. We believe that our proposed pipeline will be an important tool for high-throughput clinical data in a wide range of applications.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Perfilación de la Expresión Génica , Macrófagos , Redes Neurales de la Computación
12.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39210504

RESUMEN

Microsatellite instability (MSI), a phenomenon caused by deoxyribonucleic acid (DNA) mismatch repair system deficiencies, is an important biomarker in cancer research and clinical diagnostics. MSI detection often involves next-generation sequencing data, with many studies focusing on DNA. Here, we introduce a novel approach by measuring microsatellite lengths directly from ribonucleic acid sequencing (RNA-seq) data and comparing its distribution to detect MSI. Our findings reveal distinct instability patterns between MSI-high (MSI-H) and microsatellite stable samples, indicating the efficacy of RNA-based MSI detection. Additionally, microsatellites in the 3'-untranslated regions showed the greatest predictive value for MSI detection. Notably, this efficacy extends to detecting MSI-H samples even in tumors not commonly associated with MSI. Our approach highlights the utility of RNA-seq data in MSI detection, facilitating more precise diagnostics through the integration of various biological data.


Asunto(s)
Regiones no Traducidas 3' , Inestabilidad de Microsatélites , Repeticiones de Microsatélite , Humanos , RNA-Seq/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38436563

RESUMEN

The proliferation of single-cell RNA-seq data has greatly enhanced our ability to comprehend the intricate nature of diverse tissues. However, accurately annotating cell types in such data, especially when handling multiple reference datasets and identifying novel cell types, remains a significant challenge. To address these issues, we introduce Single Cell annotation based on Distance metric learning and Optimal Transport (scDOT), an innovative cell-type annotation method adept at integrating multiple reference datasets and uncovering previously unseen cell types. scDOT introduces two key innovations. First, by incorporating distance metric learning and optimal transport, it presents a novel optimization framework. This framework effectively learns the predictive power of each reference dataset for new query data and simultaneously establishes a probabilistic mapping between cells in the query data and reference-defined cell types. Secondly, scDOT develops an interpretable scoring system based on the acquired probabilistic mapping, enabling the precise identification of previously unseen cell types within the data. To rigorously assess scDOT's capabilities, we systematically evaluate its performance using two diverse collections of benchmark datasets encompassing various tissues, sequencing technologies and diverse cell types. Our experimental results consistently affirm the superior performance of scDOT in cell-type annotation and the identification of previously unseen cell types. These advancements provide researchers with a potent tool for precise cell-type annotation, ultimately enriching our understanding of complex biological tissues.


Asunto(s)
Curaduría de Datos , Análisis de Expresión Génica de una Sola Célula , Humanos , Benchmarking , Aprendizaje , Investigadores
14.
Mol Cell Proteomics ; 23(2): 100719, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242438

RESUMEN

Although the human gene annotation has been continuously improved over the past 2 decades, numerous studies demonstrated the existence of a "dark proteome", consisting of proteins that were critical for biological processes but not included in widely used gene catalogs. The Genotype-Tissue Expression project generated more than 15,000 RNA-seq datasets from multiple tissues, which modeled 30 million transcripts in the human genome. To provide a resource of high-confidence novel proteins from the dark proteome, we screened 50,000 mass spectrometry runs from over 900 projects to identify proteins translated from the Genotype-Tissue Expression transcript model with proteomic support. We also integrated 3.8 million common genetic variants from the gnomAD database to improve peptide identification. As a result, we identified 170,529 novel peptides with proteomic evidence, of which 6048 passed the strictest standard we defined and were supported by PepQuery. We provided a user-friendly website (https://ncorf.genes.fun/) for researchers to check the evidence of novel peptides from their studies. The findings will improve our understanding of coding genes and facilitate genomic data interpretation in biomedical research.


Asunto(s)
Proteogenómica , Humanos , Proteogenómica/métodos , Proteoma/metabolismo , Proteómica/métodos , Péptidos/genética , Genoma Humano
15.
Proc Natl Acad Sci U S A ; 120(48): e2313197120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988466

RESUMEN

A lead aryl pyrrolidinone anilide identified using high-throughput in vivo screening was optimized for efficacy, crop safety, and weed spectrum, resulting in tetflupyrolimet. Known modes of action were ruled out through in vitro enzyme and in vivo plant-based assays. Genomic sequencing of aryl pyrrolidinone anilide-resistant Arabidopsis thaliana progeny combined with nutrient reversal experiments and metabolomic analyses confirmed that the molecular target of the chemistry was dihydroorotate dehydrogenase (DHODH), the enzyme that catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway. In vitro enzymatic and biophysical assays and a cocrystal structure with purified recombinant plant DHODH further confirmed this enzyme as the target site of this class of chemistry. Like known inhibitors of other DHODH orthologs, these molecules occupy the membrane-adjacent binding site of the electron acceptor ubiquinone. Identification of a new herbicidal chemical scaffold paired with a novel mode of action, the first such finding in over three decades, represents an important leap in combatting weed resistance and feeding a growing worldwide population.


Asunto(s)
Herbicidas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Dihidroorotato Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Herbicidas/farmacología , Pirimidinas/farmacología , Anilidas , Pirrolidinonas , Inhibidores Enzimáticos/farmacología
16.
Proc Natl Acad Sci U S A ; 120(4): e2208275120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656852

RESUMEN

De novo protein design generally consists of two steps, including structure and sequence design. Many protein design studies have focused on sequence design with scaffolds adapted from native structures in the PDB, which renders novel areas of protein structure and function space unexplored. We developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed structures with buried residues and solvent-exposed areas closely matching their native counterparts. Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a large portion of the designed scaffolds possessed global folds completely different from natural proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. Detailed data analyses revealed that the major contributions to the successful structure design lay in the optimal energy force field, which contains a balanced set of SS packing terms, and REMC simulations, which were coupled with multiple auxiliary movements to efficiently search the conformational space. Additionally, the ability to recognize and assemble uncommon super-SS geometries, rather than the unique arrangement of common SS motifs, was the key to generating novel folds. These results demonstrate a strong potential to explore both structural and functional spaces through computational design simulations that natural proteins have not reached through evolution.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Estructura Secundaria de Proteína , Conformación Proteica , Método de Montecarlo
17.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38418221

RESUMEN

As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aß reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Ratones , Femenino , Animales , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ratones Transgénicos , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
18.
Artículo en Inglés | MEDLINE | ID: mdl-39363128

RESUMEN

Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.

19.
Gastroenterology ; 167(1): 183-193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355059

RESUMEN

As it appears that we are currently at the cusp of an era in which drugs that are new, re-purposed, or "supplements" will be introduced to the management of celiac disease, we need to reflect on whether the framework is set for celiac disease to be treated increasingly with pharmaceuticals as well as diet. This refers to reflecting on the rigor of current diagnostic practices; the limitations of the current standard of care, which is a gluten-free diet; and that we lack objective markers of disease severity. Investigating these issues will help us to identify gaps in technology and practices that could be critical for selecting patients with a well-defined need for an improved or alternative treatment. Both aspects, circumscribed limitations of the gluten-free diet and diagnostics helping to define celiac disease target groups, together with the guiding requirements by the responsible regulatory authorities, will contribute to defining the subgroups of patients with confirmed celiac disease eligible for distinct pharmacologic strategies. Because many patients with celiac disease are diagnosed in childhood, these aspects need to be differentially discussed for the pediatric setting. In this perspective, we aimed to describe these contextual issues and then looked ahead to the future. What might be the major challenges in celiac disease clinics in the coming years once drugs are an option alongside diet? And what will be the future objectives for researchers who further decipher the mucosal immunology of celiac disease? Speculating on the answers to these questions is as stimulating as it is fascinating to be part of this turning point.


Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/tratamiento farmacológico , Humanos , Fármacos Gastrointestinales/uso terapéutico , Predicción , Aprobación de Drogas , Índice de Severidad de la Enfermedad
20.
Development ; 149(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341494

RESUMEN

Nymphalid butterfly species often have a different number of eyespots in forewings and hindwings, but how the hindwing identity gene Ultrabithorax (Ubx) drives this asymmetry is not fully understood. We examined a three-gene regulatory network for eyespot development in the hindwings of Bicyclus anynana butterflies and compared it with the same network previously described for forewings. We also examined how Ubx interacts with each of these three eyespot-essential genes. We found similar genetic interactions between the three genes in fore- and hindwings, but we discovered three regulatory differences: Antennapedia (Antp) merely enhances spalt (sal) expression in the eyespot foci in hindwings, but is not essential for sal activation, as in forewings; Ubx upregulates Antp in all hindwing eyespot foci but represses Antp outside these wing regions; and Ubx regulates sal in a wing sector-specific manner, i.e. it activates sal expression only in the sectors that have hindwing-specific eyespots. We propose a model for how the regulatory connections between these four genes evolved to produce wing- and sector-specific variation in eyespot number.


Asunto(s)
Mariposas Diurnas , Animales , Alas de Animales/metabolismo , Redes Reguladoras de Genes , Pigmentación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA