Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(22): e2216304120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216558

RESUMEN

The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.


Asunto(s)
Interacciones Microbiota-Huesped , Péptidos y Proteínas de Señalización Intercelular , Lectinas , Humanos , Pared Celular/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polisacáridos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
2.
Mol Microbiol ; 120(4): 508-524, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329112

RESUMEN

It is widely acknowledged that the human-associated microbial community influences host physiology, systemic health, disease progression, and even behavior. There is currently an increased interest in the oral microbiome, which occupies the entryway to much of what the human initially encounters from the environment. In addition to the dental pathology that results from a dysbiotic microbiome, microbial activity within the oral cavity exerts significant systemic effects. The composition and activity of the oral microbiome is influenced by (1) host-microbial interactions, (2) the emergence of niche-specific microbial "ecotypes," and (3) numerous microbe-microbe interactions, shaping the underlying microbial metabolic landscape. The oral streptococci are central players in the microbial activity ongoing in the oral cavity, due to their abundance and prevalence in the oral environment and the many interspecies interactions in which they participate. Streptococci are major determinants of a healthy homeostatic oral environment. The metabolic activities of oral Streptococci, particularly the metabolism involved in energy generation and regeneration of oxidative resources vary among the species and are important factors in niche-specific adaptations and intra-microbiome interactions. Here we summarize key differences among streptococcal central metabolic networks and species-specific differences in how the key glycolytic intermediates are utilized.


Asunto(s)
Bacterias , Microbiota , Humanos , Bacterias/metabolismo , Streptococcus , Redes y Vías Metabólicas , Interacciones Microbiota-Huesped
3.
Appl Environ Microbiol ; 90(4): e0203523, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38440981

RESUMEN

The generation of nitrite by the oral microbiota is believed to contribute to healthy cardiovascular function, with oral nitrate reduction to nitrite associated with systemic blood pressure regulation. There is the potential to manipulate the composition or activities of the oral microbiota to a higher nitrate-reducing state through nitrate supplementation. The current study examined microbial community composition and enzymatic responses to nitrate supplementation in sessile oral microbiota grown in continuous culture. Nitrate reductase (NaR) activity and nitrite concentrations were not significantly different to tongue-derived inocula in model biofilms. These were generally dominated by Streptococcus spp., initially, and a single nitrate supplementation resulted in the increased relative abundance of the nitrate-reducing genera Veillonella, Neisseria, and Proteus spp. Nitrite concentrations increased concomitantly and continued to increase throughout oral microbiota development. Continuous nitrate supplementation, over a 7-day period, was similarly associated with an elevated abundance of nitrate-reducing taxa and increased nitrite concentration in the perfusate. In experiments in which the models were established in continuous low or high nitrate environments, there was an initial elevation in nitrate reductase, and nitrite concentrations reached a relatively constant concentration over time similar to the acute nitrate challenge with a similar expansion of Veillonella and Neisseria. In summary, we have investigated nitrate metabolism in continuous culture oral biofilms, showing that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of putatively NaR-producing taxa.IMPORTANCEClinical evidence suggests that blood pressure regulation can be promoted by nitrite generated through the reduction of supplemental dietary nitrate by the oral microbiota. We have utilized oral microbiota models to investigate the mechanisms responsible, demonstrating that nitrate addition increases nitrate reductase activity and nitrite concentrations in oral microbiota with the expansion of nitrate-reducing taxa.


Asunto(s)
Microbiota , Nitratos , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Nitrato-Reductasa
4.
BMC Microbiol ; 24(1): 197, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849732

RESUMEN

BACKGROUND: Emerging evidence emphasized the role of oral microbiome in oral lichen planus (OLP). To date, no dominant pathogenic bacteria have been identified consistently. It is noteworthy that a decreased abundance of Streptococcus, a member of lactic acid bacteria (LAB) in OLP patients has been commonly reported, indicating its possible effect on OLP. This study aims to investigate the composition of LAB genera in OLP patients by high-throughput sequencing, and to explore the possible relationship between them. METHODS: We collected saliva samples from patients with OLP (n = 21) and healthy controls (n = 22) and performed 16 S rRNA gene high-throughput sequencing. In addition, the abundance of LAB genera was comprehensively analyzed and compared between OLP and HC group. To verify the expression of Lactococcus lactis, real time PCR was conducted in buccal mucosa swab from another 14 patients with OLP and 10 HC. Furthermore, the correlation was conducted between clinical severity of OLP and LAB. RESULTS: OLP and HC groups showed similar community richness and diversity. The members of LAB, Lactococcus and Lactococcus lactis significantly decreased in saliva of OLP cases and negatively associated with OLP severity. In addition, Lactococcus and Lactococcus lactis showed negative relationship with Fusobacterium and Aggregatibacter, which were considered as potential pathogens of OLP. Similarly, compared with healthy controls, the amount of Lactococcus lactis in mucosa lesion of OLP patients was significantly decreased. CONCLUSIONS: A lower amount of Lactococcus at genus level, Lactococcus lactis at species level was observed in OLP cases and associated with disease severity. Further studies to verify the relationship between LAB and OLP, as well as to explore the precise mechanism is needed.


Asunto(s)
Lactobacillales , Liquen Plano Oral , Microbiota , ARN Ribosómico 16S , Saliva , Humanos , Saliva/microbiología , Femenino , Masculino , Liquen Plano Oral/microbiología , Persona de Mediana Edad , Lactobacillales/genética , Lactobacillales/aislamiento & purificación , Lactobacillales/clasificación , ARN Ribosómico 16S/genética , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento , Anciano , Mucosa Bucal/microbiología , Estudios de Casos y Controles , ADN Bacteriano/genética , Lactococcus lactis/genética , Lactococcus lactis/aislamiento & purificación
5.
Cardiovasc Diabetol ; 23(1): 123, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581039

RESUMEN

BACKGROUND: Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS: We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS: Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION: Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Fusobacterium nucleatum/fisiología , Enfermedad de la Arteria Coronaria/etiología
6.
Microb Pathog ; 192: 106701, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754566

RESUMEN

Plaque-induced gingivitis is an inflammatory response in gingival tissues resulting from bacterial plaque accumulation at the gingival margin. Postbiotics can promote the proliferation of beneficial bacteria and optimise the state of microbiota in the oral cavity. In this study, we investigated the effect of inactivated Lacticaseibacillus paracasei Probio-01 on plaque-induced gingivitis and the dental plaque microbiota. A total of 32 healthy gingival participants (Group N, using blank toothpaste for 3 months) and 60 patients with plaque-induced gingivitis (30 in Group F, using inactivated Probio-01 toothpaste for 3 months, and 30 in Group B, using blank toothpaste for 3 months, respectively) were recruited. Clinical indices, which included bleeding on probing (BOP), gingival index (GI), and plaque index (PI), were used to assess the severity of gingivitis. Furthermore, 16SrDNA amplicon sequencing was used to explore changes in the gingival state and dental plaque microbiota in patients with plaque-induced gingivitis. The results showed that inactivated Probio-01 significantly reduced clinical indices of gingivitis, including BOP, GI, and PI, in participants with plaque-induced gingivitis and effectively relieved gingival inflammation, compared with that observed in the control group (group B). Inactivated Probio-01 did not significantly influence the diversity of dental plaque microbiota, but increased the relative abundance of dental plaque core bacteria, such as Leptotrichia and Fusobacterium (P < 0.05). Strong correlations were observed between the indices and abundance of dental plaque microbiota. Overall, the inactivated Probio-01 significantly reduced the clinical indices of gingivitis and effectively improved gingival inflammation in patients with plaque-induced gingivitis. The activity of inactivated Probio-01 against plaque-induced gingivitis was possibly mediated by its ability to regulate the dental plaque microbiota, as indicated by the close correlation between the plaque microbiota and clinical indices of gingivitis.


Asunto(s)
Placa Dental , Gingivitis , Microbiota , Pastas de Dientes , Humanos , Gingivitis/microbiología , Placa Dental/microbiología , Femenino , Masculino , Microbiota/efectos de los fármacos , Adulto , Pastas de Dientes/uso terapéutico , Adulto Joven , Índice Periodontal , Probióticos/administración & dosificación , Probióticos/uso terapéutico , ARN Ribosómico 16S/genética , Índice de Placa Dental , Encía/microbiología , Encía/patología , Persona de Mediana Edad
7.
Int Arch Allergy Immunol ; 185(1): 84-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37866360

RESUMEN

INTRODUCTION: Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin disease characterized by Th2 cell-mediated type 2 inflammation. Emerging evidence indicated that AD patients exhibit an increased incidence of oral disorders. In the present study, we sought mechanistic insights into how AD affects periodontitis. METHODS: Onset of AD was induced by 2,4-dinitrochlorobenzene (DNCB). Furthermore, we induced periodontitis (P) in AD mice. The effect of AD in promoting inflammation and bone resorption in gingiva was evaluated. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunofluorescence assay, and flow cytometry were used to investigate histomorphology and cytology analysis, respectively. RNA sequencing of oral mucosa is used tissues to further understand the dynamic transcriptome changes. 16S rRNA microbial analysis is used to profile oral microbial composition. RESULTS: Compared to control group, mice in AD group showed inflammatory signatures and infiltration of a proallergic Th2 (Th2A)-like subset in oral mucosa but not periodontitis, as identified by not substantial changes in mucosa swelling, alveolar bone loss, and TRAP+ osteoclasts infiltration. Similarly, more Th2A-like cell infiltration and interleukin-4 levels were significantly elevated in the oral mucosa of DNCB-P mice compared to P mice. More importantly, AD exacerbates periodontitis when periodontitis has occurred and the severity of periodontitis increased with aggravation of dermatitis. Transcriptional analysis revealed that aggravated periodontitis was positively correlated with more macrophage infiltration and abundant CCL3 secreted. AD also altered oral microbiota, indicating the re-organization of extracellular matrix. CONCLUSIONS: These data provide solid evidence about exacerbation of periodontitis caused by type 2 dermatitis, advancing our understanding in cellular and microbial changes during AD-periodontitis progression.


Asunto(s)
Dermatitis Atópica , Periodontitis , Humanos , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno/metabolismo , Dinitroclorobenceno/farmacología , Dinitroclorobenceno/uso terapéutico , ARN Ribosómico 16S , Inmunoglobulina E/metabolismo , Antiinflamatorios/farmacología , Piel , Inflamación/metabolismo , Periodontitis/complicaciones , Periodontitis/metabolismo , Ratones Endogámicos BALB C , Citocinas/metabolismo
8.
Hum Genomics ; 17(1): 72, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542347

RESUMEN

Head and neck cancers are a complex malignancy comprising multiple anatomical sites, with cancer of the oral cavity ranking among the deadliest and the most disfiguring cancers globally. Oral cancer (OC) constitutes a subset of head and neck cancer cases, presenting primarily as tobacco- and alcohol-associated oral squamous cell carcinoma (OSCC), with a 5-year survival rate of ~ 65%, partly due to the lack of early detection and effective treatments. OSCC arises from premalignant lesions (PMLs) in the oral cavity through a multi-step series of clinical and histopathological stages, including varying degrees of epithelial dysplasia. To gain insights into the molecular mechanisms associated with the progression of PMLs to OSCC, we profiled the whole transcriptome of 66 human PMLs comprising leukoplakia with dysplasia and hyperkeratosis non-reactive (HkNR) pathologies, alongside healthy controls and OSCC. Our data revealed that PMLs were enriched in gene signatures associated with cellular plasticity, such as partial EMT (p-EMT) phenotypes, and with immune response. Integrated analyses of the host transcriptome and microbiome further highlighted a significant association between differential microbial abundance and PML pathway activity, suggesting a contribution of the oral microbiome toward PML evolution to OSCC. Collectively, this study reveals molecular processes associated with PML progression that may help early diagnosis and disease interception at an early stage.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/genética , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Transcriptoma/genética , Análisis de Secuencia de ARN
9.
Pharmacol Res ; 204: 107214, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763328

RESUMEN

Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.


Asunto(s)
Depresión , Disbiosis , Estrés Psicológico , Animales , Disbiosis/metabolismo , Depresión/metabolismo , Depresión/microbiología , Depresión/psicología , Depresión/etiología , Masculino , Humanos , Estrés Psicológico/metabolismo , Estrés Psicológico/microbiología , Estrés Psicológico/psicología , Femenino , Adulto , Ratones , Restricción Física/psicología , Ratones Endogámicos C57BL , Microbioma Gastrointestinal , Eje Cerebro-Intestino , Boca/microbiología , Persona de Mediana Edad , Saliva/metabolismo , Saliva/microbiología , Conducta Animal , Barrera Hematoencefálica/metabolismo
10.
J Periodontal Res ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775019

RESUMEN

This systematic review aims to investigate the microbial basis underlying the association between oral microbiota and colorectal cancer. A comprehensive search was conducted across four databases, encompassing potentially relevant studies published up to April 2024 related to the PECO question: "Is there a differentiation in oral microbial composition between adult patients diagnosed with colorectal cancer compared to healthy patients?". The Newcastle-Ottawa Scale was used to evaluate the quality of the studies included. The level of evidence was assessed through the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) tool. Sixteen studies fulfilled the eligibility criteria. Based on low to moderate evidence profile, high levels of certain subspecies within Firmicutes (such as Streptococcus anginosus, Peptostreptococcus stomatis, S. koreensis, and S. gallolyticus), Prevotella intermedia, Fusobacterium nucleatum, and Neisseria oralis were found to be associated with colorectal cancer. Conversely, certain bacteria (e.g., Lachnospiraceae, F. periodonticum, and P. melaninogenica) could exert a symbiotic protective effect against colorectal cancer. Based on existing evidence, it appears that variations in oral microbiota composition exist among individuals with and without colorectal cancer. However, further research is necessary to determine the mechanisms of oral dysbiosis in colorectal carcinogenesis.

11.
Oral Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569071

RESUMEN

OBJECTIVES: Burning mouth syndrome (BMS) is a chronic orofacial pain disorder with unclear etiology, in which the tongue is most commonly affected. This study aims to provide implication of the possible relationship between oral microbiota and the pathogenesis of BMS. MATERIALS AND METHODS: Saliva and tongue swabs of 15 primary BMS patients and 10 healthy controls were collected and assessed by 16S rRNA gene amplicon sequencing. The microbiota compositions were compared and bioinformatic analysis was conducted. RESULTS: Differences in microbiota compositions between BMS patients and healthy controls were revealed in both saliva and tongue samples. In saliva, Streptococcus, Rothia, and Neisseria were the predominant genus at the taxonomic level in BMS patients. In tongue samples, Prevotella, Streptococcus, and Neisseria were the dominant genus at the taxonomic level in BMS patients. LEfSe analysis and linear discriminant analysis score showed that Actinobacteria were the predominant phylum in saliva, and Selenomonas were enriched in the dorsum of the tongue of BMS patients. CONCLUSIONS: This study for the first-time reported saliva and tongue microbiota profiles were distinguished from that of healthy controls, indicating a necessity for further research on the possible relationship between oral microbes and the pathogenesis of BMS.

12.
J Clin Lab Anal ; 38(1-2): e25002, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38254289

RESUMEN

BACKGROUND: Periodontal diseases (PDs) have been documented to be significantly more prevalent and severe in patients with Down syndrome (DS). Different immunological and microbiological factors contributed to predisposing these patients to progressive and recurrent PDs. AIM: The aim of this review was to investigate the altered immunological responses and oral microbiota disorders as well as focus on adjunctive non-surgical methods for the treatment of PDs and its applicability in patients with DS. MATERIAL AND METHODS: A literature review was conducted addressing the following topics: (1) the altered immunological responses, (2) orofacial disorders related to DS patients, (3) oral microbiota changing, and (4) adjunctive non-surgical treatment and its efficacy in patients with DS. RESULTS: Due to the early onset of PDs in children with DS, the need for prompt and effective treatment in these patients is essential. DISCUSSION AND CONCLUSION: So, investigating underlying factors may open a new window to better understand the pathology of PDs in DS people and thus, find better strategies for treatment in such group. Although non-surgical treatments such as photodynamic therapy and probiotic consumption represented acceptable outcomes in different examined patients without DS, data about the application of these convenience and no need for local anesthesia methods in patients with DS is limited.


Asunto(s)
Síndrome de Down , Enfermedades Periodontales , Niño , Humanos , Síndrome de Down/complicaciones , Síndrome de Down/terapia , Enfermedades Periodontales/epidemiología , Enfermedades Periodontales/etiología , Enfermedades Periodontales/terapia , Resultado del Tratamiento , Causalidad
13.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34610963

RESUMEN

The microbial communities in the mouth and colon are anatomically connected via the saliva. However, the extent to which oral microbes reach and successfully colonize the distal gut has been debated. To resolve this long-standing controversy, we used exact amplicon sequence variants generated from concurrently collected saliva/stool microbiota in 66 healthy adults from two countries to show that, with one exception (Dialister invisus), the two niches are completely distinct. Thus, there is no evidence for colonization of oral bacteria in the distal gut. This defines the healthy state to which pathological states could be compared. Finding the same bacteria in the mouth and stool may warrant clinical investigation for an underlying pathology.


Asunto(s)
Bacterias/crecimiento & desarrollo , Intestinos/microbiología , Boca/microbiología , Adulto , Bacterias/clasificación , Heces/microbiología , Microbioma Gastrointestinal , Humanos , Filogenia
14.
Artículo en Inglés | MEDLINE | ID: mdl-38949882

RESUMEN

Oral Squamous cell carcinoma (OSCC) is the 14th most frequent cancer with 300,000 new cases and 100,000 deaths reported annually. Even with advanced therapy, the treatment outcomes are poor at advanced stages of the disease. The diagnosis of early OSCC is of paramount clinical value given the high mortality rate associated with the late stages of the disease. Recently, the role of microbiome in the disease manifestation, including oral cancer, has garnered considerable attention. But, to establish the role of bacteria in oral cancer, it is important to determine the differences in the colonization pattern in non-tumour and tumour tissues. In this study, 16S rRNA based metagenomic analyses of 13 tumorous and contralateral anatomically matched normal tissue biopsies, obtained from patients with advanced stage of OSCC were evaluated to understand the correlation between OSCC and oral microbiome. In this study we identified Fusobacterium, Prevotella, Capnocytophaga, Leptotrichia, Peptostreptococcus, Parvimonas and Bacteroidetes as the most significantly enriched taxa in OSCC lesions compared to the non-cancerous tissues. Further, PICRUSt2 analysis unveiled enhanced expression of metabolic pathways associated with L-lysine fermentation, pyruvate fermentation, and isoleucine biosynthesis in those microbes associated with OSCC tissues. These findings provide valuable insights into the distinctive microbial signatures associated with OSCC, offering potential biomarkers and metabolic pathways underlying OSCC pathogenesis. While our focus has primarily centred on microbial signatures, it is essential to recognize the pivotal role of host factors such as immune responses, genetic predisposition, and the oral microenvironment in shaping OSCC development and microbiome composition.

15.
Clin Oral Investig ; 28(7): 377, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884817

RESUMEN

OBJECTIVES: The pathogenesis of oral cavity cancers is complex. We tested the hypothesis that oral microbiota dysbiosis is associated with oral cavity cancer. MATERIALS AND METHODS: Patients with primary oral cavity cancer who met the inclusion and exclusion criteria were included in the study. Matching healthy individuals were recruited as controls. Data on socio-demographic and behavioral factors, self-reported periodontal measures and habits, and current dental status were collected using a structured questionnaire and periodontal chartings. In addition to self-reported oral health measures, each participant received a standard and detailed clinical examination. DNA was extracted from saliva samples from patients and healthy controls. Next-generation sequencing was performed by targeting V3-V4 gene regions of the 16 S rRNA with subsequent bioinformatic analyses. RESULTS: Patients with oral cavity cancers had a lower quality of oral health than healthy controls. Proteobacteria, Aggregatibacter, Haemophilus, and Neisseria decreased, while Firmicutes, Bacteroidetes, Actinobacteria, Lactobacillus, Gemella, and Fusobacteria increased in oral cancer patients. At the species level, C. durum, L. umeaens, N. subflava, A. massiliensis, and V. dispar were significantly lower, while G. haemolysans was significantly increased (p < 0.05). Major periodontopathogens associated with periodontal disease (P. gingivalis and F.nucleatum) increased 6.5- and 2.8-fold, respectively. CONCLUSION: These data suggested that patients with oral cancer had worse oral health conditions and a distinct oral microbiome composition that is affected by personal daily habits and may be associated with the pathogenicity of the disease and interspecies interactions. CLINICAL RELEVANCE: This paper demonstrates the link between oral bacteria and oral cancers, identifying mechanistic interactions between species of oral microbiome.


Asunto(s)
Disbiosis , Neoplasias de la Boca , Saliva , Humanos , Femenino , Masculino , Persona de Mediana Edad , Disbiosis/microbiología , Neoplasias de la Boca/microbiología , Saliva/microbiología , Estudios de Casos y Controles , Encuestas y Cuestionarios , Anciano , Microbiota , Adulto , ARN Ribosómico 16S/análisis , Salud Bucal
16.
Anaerobe ; 85: 102820, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309618

RESUMEN

OBJECTIVES: Methanogenic archaea are a minor component of human oral microbiota. Due to their relatively low abundance, the detection of these neglected microorganisms is challenging. This study concerns the presence of methanogens in salivary samples collected from Tunisian adults to evaluate their prevalence and burden using a polyphasic molecular approach. METHODS: A total of 43 saliva samples were included. Metagenomic and standard 16S rRNA sequencing were performed as an initial screening to detect the presence of methanogens in the oral microbiota of Tunisian adults. Further investigations were performed using specific quantitative real-time PCR targeting Methanobrevibacter oralis and Methanobrevibacter smithii. RESULTS: Methanobrevibacter was detected in 5/43 (11.62 %) saliva samples after metagenomic 16S rRNA data analysis. The presence of M. oralis was confirmed in 6/43 samples by standard 16S rRNA sequencing. Using real-time PCR, methanogens were detected in 35/43 (81.39 %) samples, including 62.79 % positive for M. oralis and 76.74 % positive for M. smithii. These findings reflect the high prevalence of both methanogens, revealed by the high sensitivity of the real-time PCR approach. Interestingly, we also noted a significant statistical association between the detection of M. smithii and poor adherence to a Mediterranean diet, indicating the impact of diet on M. smithii prevalence. CONCLUSION: Our study showed the presence of methanogens in the oral microbiota of Tunisian adults with an unprecedented relatively high prevalence. Choice of methodology is also central to picturing the real prevalence and diversity of such minor taxa in the oral microbiota.


Asunto(s)
Microbiota , Saliva , Adulto , Humanos , ARN Ribosómico 16S/genética , Methanobrevibacter/genética , Archaea/genética
17.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928118

RESUMEN

ß C-S lyases (ß-CSLs; EC 4.4.1.8) are enzymes catalyzing the dissociation of ß carbon-sulfur bonds of cysteine S-conjugates to produce odorant metabolites with a free thiol group. These enzymes are increasingly studied for their role in flavor generation in a variety of food products, whether these processes occur directly in plants, by microbial ß-CSLs during fermentation, or in the mouth under the action of the oral microbiota. Microbial ß-CSLs react with sulfur aroma precursors present in beverages, vegetables, fruits, or aromatic herbs like hop but also potentially with some precursors formed through Maillard reactions in cooked foods such as meat or coffee. ß-CSLs from microorganisms like yeasts and lactic acid bacteria have been studied for their role in the release of polyfunctional thiols in wine and beer during fermentation. In addition, ß-CSLs from microorganisms of the human oral cavity were shown to metabolize similar precursors and to produce aroma in the mouth with an impact on retro-olfaction. This review summarizes the current knowledge on ß-CSLs involved in flavor generation with a focus on enzymes from microbial species present either in the fermentative processes or in the oral cavity. This paper highlights the importance of this enzyme family in the food continuum, from production to consumption, and offers new perspectives concerning the utilization of ß-CSLs as a flavor enhancer.


Asunto(s)
Fermentación , Aromatizantes , Humanos , Aromatizantes/metabolismo , Liasas de Carbono-Azufre/metabolismo , Bacterias/enzimología , Bacterias/metabolismo , Gusto
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338956

RESUMEN

Gastric cancer (GC) is one of the most common causes of cancer deaths, and GC treatments represent a large area of research. Although initially regarded as a sterile organ and unsuitable for microbial communities, the discovery of Helicobacter pylori made us realize that some microbes can colonize the stomach. In recent years, growing interest in gastric bacteria has expanded to the gut microbiota and, more recently, to the oral microbiota. Indeed, the oral-gastric-gut microbiota axis may play a crucial role in maintaining homeostasis, while changes in microbiota composition in GC patients can influence clinical outcomes. On the one hand, the microbiota and its metabolites may significantly influence the progression of GC, while anti-GC treatments such as gastrectomy and chemotherapy may significantly impact the oral-gastric-gut microbiota axis of GC patients. In this context, the role of nutritional therapies, including diet, prebiotics, and probiotics, in treating GC should not be underestimated. Wit this review, we aim to highlight the main role of the gastric, oral, and gut microbiota in GC onset and progression, representing potential future biomarkers for early GC detection and a target for efficient nutritional therapies during the course of GC.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/microbiología
19.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256127

RESUMEN

The relationship between cesarean section (CS) delivery and intestinal microbiota is increasingly studied. CS-born infants display distinct gut microbial compositions due to the absence of maternal birth canal microorganisms. These alterations potentially link to long-term health implications like immune-related disorders and allergies. This correlation underscores the intricate connection between birth mode and the establishment of diverse intestinal microbiota. A systematic literature review was conducted on the PubMed, Scopus, and Web of Science databases by analyzing the articles and examining the intricate interactions between CS delivery and the infant's intestinal microbiota. The analysis, based on a wide-ranging selection of studies, elucidates the multifaceted dynamics involved in CS-associated shifts in the establishment of fetal microbiota. We also explore the potential ramifications of these microbial changes on neonatal health and development, providing a comprehensive overview for clinicians and researchers. By synthesizing current findings, this review contributes to a deeper understanding of the interplay between delivery mode and early microbial colonization, paving the way for informed clinical decisions and future investigations in the field of perinatal medicine.


Asunto(s)
Cesárea , Microbioma Gastrointestinal , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Cesárea/efectos adversos , Bases de Datos Factuales , Feto
20.
Compr Rev Food Sci Food Saf ; 23(2): e13303, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38343293

RESUMEN

The field of aroma release and perception during the oral process has been well studied. However, the traditional approaches have not fully explored the integration of oral biology, microbiology, and neurology to further understand aroma release and perception mechanisms. Herein, to address the existing challenges in this field, we introduce the oral-microbiota-brain axis (OMBA), an innovative framework that encapsulates the interactive relationships among saliva and the oral mucosa, the oral microbiota, and the brain in aroma release and perception. This review introduces the OMBA and highlights its role as a key interface facilitating the sensory experience of aroma. Based on a comprehensive literature survey, the specific roles of the oral mucosa, oral microbiota, saliva, and brain in the OMBA are discussed. This integrated approach reveals the importance of each component and the interconnected relationships within this axis in the overall process of aroma release and perception. Saliva and the oral mucosa play fundamental roles in aroma release and perception; the oral microbiota regulates aroma release and impacts olfactory perception; and the brain's intricate neural circuitry is central to the decoding and interpretation of aroma signals. The components of this axis are interdependent, and imbalances can disrupt aroma perception. The OMBA framework not only enhances our comprehension of aroma release and perception but also paves the way for innovative applications that could heighten sensory experiences.


Asunto(s)
Microbiota , Odorantes , Saliva , Encéfalo , Percepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA