Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273463

RESUMEN

Phospholipase A2 (PLA2) is a superfamily of phospholipase enzymes that dock at the water/oil interface of phospholipid assemblies, hydrolyzing the ester bond at the sn-2 position. The enzymatic activity of these enzymes differs based on the nature of the substrate, its supramolecular assemblies (micelle, liposomes), and their composition, reflecting the interfacial nature of the PLA2s and requiring assays able to directly quantify this interaction of the enzyme(s) with these supramolecular assemblies. We developed and optimized a simple, universal assay method employing the pH-sensitive indicator dye bromothymol blue (BTB), in which different POPC (3-palmitoyl-2-oleoyl-sn-glycero-1-phosphocholine) self-assemblies (liposomes or mixed micelles with Triton X-100 at different molar ratios) were used to assess the enzymatic activity. We used this assay to perform a comparative analysis of PLA2 kinetics on these supramolecular assemblies and to determine the kinetic parameters of PLA2 isozymes IB and IIA for each supramolecular POPC assembly. This assay is suitable for assessing the inhibition of PLA2s with great accuracy using UV-VIS spectrophotometry, being thus amenable for screening of PLA2 enzymes and their substrates and inhibitors in conditions very similar to physiologic ones.


Asunto(s)
Fosfatidilcolinas , Fosfolipasas A2 , Fosfolipasas A2/metabolismo , Fosfolipasas A2/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Cinética , Micelas , Liposomas/química , Concentración de Iones de Hidrógeno , Pruebas de Enzimas/métodos , Octoxinol/química
2.
J Fluoresc ; 33(2): 653-661, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36480126

RESUMEN

Accurate monitoring of intracellular pH in living cells is critical for developing a better understanding of cellular activities. In the current study, label-free carbon dots (p-CDs), which were fabricated using a straightforward one-pot solvothermal treatment of p-phenylenediamine and urea, were employed to create a new ratiometric pH nanosensor. Under single-wavelength excitation (λex = 500 nm), the p-CDs gave dual emission bands at 525 and 623 nm. The fluorescent intensity ratio (I525/I623) was linearly related to pH over the range 4.0 to 8.8 in buffer solutions, indicating that the ratiometric fluorescence nanoprobe may be useful for pH sensing. In pH measurements, the p-CDs also demonstrated outstanding selectivity, reversibility, and photostability. Owing to the advantages outlined above, the nanoprobe was used to monitor the pH of HeLa cells effectively. The label-free CD-based ratiometric nanoprobe features comparatively easy manufacturing and longer excitation and emission wavelengths than the majority of previously reported CD-based ratiometric pH sensors, which is ultimately beneficial for applications in biological imaging.


Asunto(s)
Puntos Cuánticos , Humanos , Células HeLa , Carbono , Colorantes Fluorescentes , Concentración de Iones de Hidrógeno
3.
Luminescence ; 38(7): 1297-1306, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36377288

RESUMEN

Here we report a simple, inexpensive, energy benign, yet novel pH-driven chemical precipitation technique to achieve microstructural and band gap engineering of calcium hydroxide nanoparticles (CHNPs). The chemical precipitation route involved the use of 0.4-1.6 M Ca(NO3 )2 .4H2 O solutions as the precursor and 1 M NaOH solution as the precipitator. The simple variation in precursor molarity induces a pH change from about 12.4 to 11.3 in the reactant solution. The CHNPs characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and ultraviolet-visible (UV-Vis) spectroscopy techniques confirm a jump of nanocrystallite size from ~50-70 nm with a concomitant reduction of direct optical band gap energy from ~5.38-5.26 eV. The possible mechanisms that could be operative behind obtaining microstructurally tuned (MT)-CHNPS and band gap engineering (BGE) are discussed from both theoretical and physical process perspectives. Furthermore, the implications of these novel results for possible futuristic applications are briefly hinted upon.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Concentración de Iones de Hidrógeno
4.
Luminescence ; 38(7): 1287-1296, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36251155

RESUMEN

Nickel hydroxide nanoparticles (NHNPs) are extremely important semiconducting materials for applications in energy storage and energy harvesting devices. This study uses a novel variation in molarity of the sodium hydroxide (NaOH) precipitator solution to enhance the direct optical band gap in the NHNPs chemically synthesized by using nickel nitrate hexahydrate (Ni(NO3 )2 ·6H2 O) as the precursor. The simple, energy benign chemical precipitation route involved the usage of 1 M (Ni(NO3 )2 ·6H2 O) solutions as the precursor and 0.4 M, 0.6 M, and 0.8 M NaOH solutions as the precipitator solutions. The simple variation in precipitator molarity induces an increase in pH from about 6.9 to 7.5 of the reactant solution. As the molarity of the precursor solution does not change, the change in pH of the reactant solution is equivalent to the change in the pH of the precipitator solution. The NHNPs characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), Fourier-transform infrared (FTIR) and ultraviolet-visible (UV-vis) techniques confirm a reduction of the nanocrystallite size from about 6.8 to 4.5 nm with a concomitant enhancement in the direct optical band gap energy from about 2.64 to 2.74 eV. The possible mechanisms that could be operative behind obtaining microstructurally tuned (MT)-NHNPs and band gap engineering (BGE) of the MT-NHNPs are discussed from both theoretical and physical process perspectives. Further, the implications of these novel results for possible future applications are briefly touched upon. The reported results might be useful to assess the material as an active electrode to improve the performance of batteries.


Asunto(s)
Nanopartículas , Hidróxido de Sodio , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Hidróxidos , Difracción de Rayos X
5.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894976

RESUMEN

The passage of cathodic current through the acidized aqueous bromate solution (catholyte) leads to a negative shift of the average oxidation degree of Br atoms. It means a distribution of Br-containing species in various oxidation states between -1 and +5, which are mutually transformed via numerous protonation/deprotonation, chemical, and redox/electrochemical steps. This process is also accompanied by the change in the proton (H+) concentration, both due to the participation of H+ ions in these steps and due to the H+ flux through the cation-exchange membrane separating the cathodic and anodic compartments. Variations of the composition of the catholyte concentrations of all these components has been analyzed for various initial concentrations of sulfuric acid, cA0 (0.015-0.3 M), and two values of the total concentrations of Br atoms inside the system, ctot (0.1 or 1.0 M of Br atoms), as functions of the average Br-atom oxidation degree, x, under the condition of the thermodynamic equilibrium of the above transformations. It is shown that during the exhaustion of the redox capacity of the catholyte (x pass from 5 to -1), the pH value passes through a maximum. Its height and the corresponding average oxidation state of bromine atoms depend on the initial bromate/acid ratio. The constructed algorithm can be used to select the initial acid content in the bromate catholyte, which is optimal from the point of view of preventing the formation of liquid bromine at the maximum content of electroactive compounds.


Asunto(s)
Bromo , Protones , Bromo/química , Bromatos/química , Oxidación-Reducción , Electrodos
6.
Mar Drugs ; 19(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34356810

RESUMEN

The modification of the biobased polymer chitosan is a broad and widely studied field. Herein, an insight into the hydrophobization of low-molecular-weight chitosan by substitution of amino functionalities with hexanoyl chloride is reported. Thereby, the influence of the pH of the reaction media was investigated. Further, methods for the determination of the degree of substitution based on 1H-NMR, FTIR, and potentiometric titration were compared and discussed regarding their accuracy and precision. 1H-NMR was the most accurate method, while FTIR and the potentiometric titration, though precise and reproducible, underlie the influence of complete protonation and solubility issues. Additionally, the impact of the pH variation during the synthesis on the properties of the samples was investigated by Cd2+ sorption experiments. The adjusted pH values during the synthesis and, therefore, the obtained degrees of substitution possessed a strong impact on the adsorption properties of the final material.


Asunto(s)
Quitosano/química , Acilación , Animales , Organismos Acuáticos , Hexanoles/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier
7.
Appl Microbiol Biotechnol ; 104(8): 3585-3595, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32125481

RESUMEN

The prevalence of stomatitis, especially that caused by Candida albicans, has highlighted the need for new antifungal agents. We previously found that a type of quaternary ammonium salts, dimethylaminododecyl methacrylate (DMADDM), incorporated in dental materials inhibited the growth and hyphal development of C. albicans. However, how the quaternary ammonium salts inhibited the fungal pathogens and whether the oral condition, such as salivary pH variation under different diseases, can affect the antimicrobial capacity of quaternary ammonium salts is unknown. This study evaluated the antifungal effects of DMADDM at different pH in vitro and in vivo. A pH-dependent antifungal effect of DMADDM was observed in planktonic and biofilm growth. DMADDM enhanced antifungal activity at alkaline pH. Two pH-regulated genes (PHR1/PHR2) of C. albicans were correlated with the pH-dependent antifungal effects of DMADDM. The PHR1/PHR2 genes and pH values regulated the zeta potential of C. albicans, which then influenced the binding between C. albicans cells and DMADDM. The pH-dependent antifungal activity of DMADDM was then substantiated in a murine oropharyngeal candidiasis model. We directly demonstrated that the antifungal abilities of quaternary ammonium salts relied on the cell zeta potential which affected the binding between fungal cells and quaternary ammonium salts. These findings suggest a new antifungal mechanism of quaternary ammonium under different pH and that DMADDM can be a potential antifungal agent applied in dental materials and stomatitis therapy.Key Points • DMADDM has stronger antifungal activity in alkaline than in acidic pH conditions. • The pH values and pH-regulated genes can affect the zeta potential of fungal cells. • Zeta potential of fungal cells directly affect the binding between DMADDM and cells. Graphical abstract Schematic diagram of the antifungal activities of DMADDM at different pH values.


Asunto(s)
Antifúngicos/uso terapéutico , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Metacrilatos/uso terapéutico , Orofaringe/microbiología , Compuestos de Amonio Cuaternario/uso terapéutico , Animales , Biopelículas/efectos de los fármacos , Materiales Dentales , Modelos Animales de Enfermedad , Femenino , Concentración de Iones de Hidrógeno , Metacrilatos/síntesis química , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Compuestos de Amonio Cuaternario/síntesis química
8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 819-28, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849393

RESUMEN

The primary focus of the present work is the study of the effects that two ligands and the crystallization pH have on the crystalline forms of human insulin. For this purpose, human insulin (HI) was co-crystallized with two distinct phenolic derivatives: the organic ligands meta-cresol (m-cresol) and 4-nitrophenol. The formation of polycrystalline precipitates was then followed by means of structural characterization of the individual specimens in terms of unit-cell symmetry and parameters. In both cases, two different polymorphs were identified via X-ray powder diffraction measurements, the first of hexagonal symmetry (R3 space group) at higher pH values and the second of monoclinic symmetry (space group P21) with unit-cell parameters a = 87.4282 (5), b = 70.5020 (3), c = 48.3180 (4) Å, ß = 106.8958 (4)°, the latter of which to our knowledge has never been observed before.


Asunto(s)
Cresoles/química , Insulinas/química , Nitrofenoles/química , Transición de Fase , Cristalización , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Difracción de Polvo , Difracción de Rayos X
9.
Int J Biol Macromol ; 259(Pt 1): 129142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171442

RESUMEN

Changes in pH affect metabolic pathways, primarily by modulating enzyme conformations, which is why a detailed analysis of pH-driven conformational transitions is required to understand the underlying biochemistry of diseases and biological organisms. In this work, we examined the pH-driven conformational dynamics of Bovine Serum Albumin (BSA), within the framework of the Foster Model. Circular Dichroism and Raman Optical Activity showed the conversion of helical into ß-rich structures in the acid and basic regions, while an opening of BSA tertiary structure was shown by the upsurging of accessibility of ANS-BSA binding sites and the increasing of random contributions at regions F and B. We could then revisit the Foster Model by introducing two additional intermediate conformational states and structural reorganization at extreme pH values. This expanded model opens up new possibilities concerning protein-molecule interactions, promising far-reaching implications for fields such as drug design and biomaterials.


Asunto(s)
Albúmina Sérica Bovina , Espectrometría Raman , Albúmina Sérica Bovina/química , Dicroismo Circular , Sitios de Unión , Concentración de Iones de Hidrógeno , Espectrometría de Fluorescencia
10.
Foods ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38790816

RESUMEN

The effect of shear on heat-induced changes in milk protein concentrate suspensions was examined at different pH levels, revealing novel insights into micellar dissociation and protein aggregation dynamics. Milk protein concentrate suspensions, adjusted to pH of 6.1, 6.4, 6.8, or 7.5, underwent combined heat (90 °C for 5 min or 121 °C for 2.6 min) and shear (0, 100, or 1000 s-1) treatment. The fragmentation of protein aggregates induced by shear was evident in the control MPC suspensions at pH 6.8, irrespective of the temperature. At pH 7.5, shear increased the heat-induced micellar dissociation. This effect was particularly pronounced at 121 °C and 1000 s-1, resulting in reduced particle size and an elevated concentration of κ-casein (κ-CN) in the non-sedimentable phase. At pH 6.1 or 6.4, shear effects were dependent on sample pH, thereby modifying electrostatic interactions and the extent of whey protein association with the micelles. At pH 6.1, shear promoted heat-induced aggregation, evidenced by an increase in particle size and a significant decline in both whey proteins and caseins in the non-sedimentable phase. At pH 6.4, shear-induced fragmentation of aggregates was observed, prominently due to comparatively higher electrostatic repulsions and fewer protein interactions. The influence of shear on heat-induced changes was considerably impacted by initial pH.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124767, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013304

RESUMEN

Hypochlorite (ClO-), a typical reactive oxygen species, plays an irreplaceable roles in various biological processes. In this work, long-wavelength emission carbon dots (LW-CDs) were fabricated through one-step hydrothermal method by using l-cysteine (cys) and neutral red (NR) as precursors for monitoring of hypochlorite and intracellular pH. Characterizations of as-prepared LW-CDs showed that they had excellent water solubility, high optical stability and sensitive response behavior. Fluorescence intensity of LW-CDs decayed in the presence of ClO- linearly from 10 to 162.5 µM (LOD = 1.021 µM) based on static quenching effect with ideal selectivity. Besides, LW-CDs revealed a pH responsive behavior in the pH range of 2.0 to 10.0, exhibited dual good linear relationships in the pH ranges of 4.2-5.8 and 5.8-7.4. The LW-CDs can also be utilized as imaging reagents in Hela living cells owing excellent biocompatibility and low cytotoxicity. These results demonstrated that the as-mentioned LW-CDs are expected to serve as excellent long wavelength emitting nanomaterials for fluorescence sensing and monitoring of cell fluctuations.


Asunto(s)
Carbono , Ácido Hipocloroso , Puntos Cuánticos , Ácido Hipocloroso/análisis , Humanos , Concentración de Iones de Hidrógeno , Puntos Cuánticos/química , Carbono/química , Células HeLa , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
12.
Chemosphere ; 362: 142661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906191

RESUMEN

Electro-osmosis offers an effective method for dewatering and remediating low permeability soil. Long-term observations on nonlinear behavior of electro-osmosis and the influencing factors are not commonly reported. Connection between cessation and direction reversal of electro-osmotic flow (EOF), and the evolution of electro-chemical parameters inside of the soil mass thus remains unclear. The dynamic response of EOF in variable charge soil could be significant, whereas the investigations on which are currently lacking. A series of electro-osmotic experiments were performed with two natural variable charge soils. The results indicated that initial electro-osmotic rate was positively proportional to electric current and initial electrical conductivity of the pore fluid, which could be explained by the ion migration model. The dynamic evolution of electro-osmotic rate and electro-chemical parameters corresponding to the solute and pH conditionings at the electrode compartments demonstrated that: 1) coupling effects of non-uniform distribution of voltage gradient and pH determined the magnitude and direction of EOF rate; 2) compared to the final pHIEP value, the bigger, close and smaller values of the novel index "voltage gradient weighed mean of spatial pH″ represented the forward, terminated and reversed EOF respectively; 3) the classical Helmholtz-Smoluchowski model are proved to be more applicable interpreting the coupled nonlinearity of electro-osmosis during the later steady phase. This work would facilitate future research for a comprehensive electro-osmotic model, and provide guidance to condition the initial and boundary conditions in application of electro-osmotic dewatering and electrokinetic remediation.


Asunto(s)
Conductividad Eléctrica , Electroósmosis , Suelo , Suelo/química , Electroósmosis/métodos , Ósmosis , Concentración de Iones de Hidrógeno
13.
Biotechnol Prog ; 40(1): e3393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37792408

RESUMEN

Coffee is a crop of significant socioeconomic importance, and the reuse of agri-food by-products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single-cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro-industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28-h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7-fold increase in SCP yield compared to previous basal production levels.


Asunto(s)
Candida , Coffea , Aguas Residuales , Café , Saccharomyces cerevisiae
14.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000710

RESUMEN

The purpose of this study was to evaluate a resin based pit and fissure sealant containing 45S5 bioactive glass (BAG) by examining its ion release, pH variation, and apatite-forming properties. To prepare the experimental materials, 45S5 BAG, used as a filler, was incorporated into the light curable resin matrix at concentrations of 0 (control), 12.5, 37.5, and 50.0 wt.%. Ion release, pH variation, and apatite formation (Raman spectrometer and scanning electron microscopy-energy-dispersive X-ray spectrometry measurements) were performed. While no ions were released from the control group, the experimental groups containing 45S5 BAG showed an increased release of Ca and P ions with increasing amounts of 45S5 BAG (p < 0.05). The pH of the experimental group remained high and was significantly different from the control group (p < 0.05). Unlike the control group, it was confirmed that the apatite peak was formed in the 50.0 wt.% BAG group for 90 days, and the apatite layer consisting of Ca and P was deposited on the surface. Thus, a resin based pit and fissure sealant containing 45S5 BAG is a promising material for preventing secondary caries by releasing ions and forming apatite.

15.
Talanta ; 254: 124180, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535213

RESUMEN

In this work, we designed N and S co-doped carbon dots (N,S-CDs) with long-wavelength emission and their multifunctional application in pH variation, arginine (Arg) sensing, bioimaging in living cells and zebrafish, and fluorescent materials. The N,S-CDs with excitation wavelength-dependent properties were prepared using neutral red (NR) and dl-methionine (DL-Met) as raw materials by one-pot hydrothermal strategy. The N,S-CDs exhibited a unique pH-sensitive luminescence trait within pH range of 3.2-11.0 and have great linear relationship of 4.8-8.0, which indicating their potential application as an imaging reagent in physiological environments. Arg can quench the PL of N,S-CDs due to static quenching. (SQ). The linear range is 2.5-62.5 µM and the LOD is calculated as 0.68 µM. Furthermore, the as-proposed N,S-CDs can be applied as imaging reagents for monitoring of pH and Arg in vivo and vitro owing to outstanding biocompatibility and low cytotoxicity. Interestingly, the N,S-CDs were also used in fluorescent composite films and phosphors owing to exceptional optical properties. All these results indicate that the N,S-CDs have huge potentiality in the areas of fluorescence sensing, bioimaging and fluorescent materials.


Asunto(s)
Carbono , Puntos Cuánticos , Animales , Carbono/química , Pez Cebra , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Concentración de Iones de Hidrógeno
16.
Heliyon ; 9(5): e15908, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206008

RESUMEN

This is the first paper to report on the pH response to heterogeneous wurtzite/zinc blende phase transformation, optical tunability and thermal stability advancement of the CdS nanoparticles synthesized via co-precipitation, followed by subsequent thermal treatment at a desired annealing temperature of 320 °C, while the solution pH was varied during CdS synthesis by adjusting the ammonium salt concentration. The surface morphology, crystalline structure, functional groups, optical properties and thermal stability of CdS were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-visible spectrophotometer, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The results show that a dominant sharp band occurs in the FTIR spectra, which authenticates the presence of Cd-S bonds. XRD results reveal that as the pH declines, CdS in the initial cubic phase has gradually transformed into a heterogeneous phase with the coexistence of cubic and hexagonal structures. As observed from the SEM images, the CdS nanoparticles display a homogeneous, smooth and spherically shaped morphology. Optical absorption characterized by UV-visible spectrophotometry denotes that the band gap decreases proportionally with pH, which could be attributed to the formation of larger grain sizes from the aggregation of many small nanocrystallites. TGA and DSC analyses demonstrate an improvement in the thermal stability of CdS with increasing pH values. Consequently, the present findings dictate that pH tunability could be a valuable approach to procuring the desired properties for the respective applications of CdS in diverse fields.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122483, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36812757

RESUMEN

In this work, dual emission nitrogen and sulfur co-doped fluorescent carbon dots (DE-CDs) were designed for pH variation and hydrogen sulfide (H2S) sensing and bioimaging through fluorescence enhancement. The DE-CDs with green-orange emission were facilely prepared by one-pot hydrothermal strategy using neutral red and sodium 1,4-dinitrobenzene sulfonate as precursors, manifesting intriguing dual-emission behavior at 502 and 562 nm. As the pH increases from 2.0 to 10.2, the fluorescence of DE-CDs gradually increases. The linear ranges are 2.0-3.0 and 5.4-9.6, respectively, which are attributed to the abundant amino groups on the surface of the DE-CDs. Meanwhile, H2S can be employed as an enhancer to increase the fluorescence of DE-CDs. The linear range is 25-500 µM, and the LOD is calculated to be 9.7 µM. Besides, the DE-CDs can be used as imaging agents for pH variation and H2S sensing in living cells and zebrafish due to their low toxicity and good biocompatibility. All of the results demonstrated that the DE-CDs can monitor pH fluctuations and H2S in aqueous and biological environments, and have promising applications in the fields of fluorescence sensing, disease detection, and bioimaging.


Asunto(s)
Sulfuro de Hidrógeno , Puntos Cuánticos , Animales , Carbono , Pez Cebra , Colorantes Fluorescentes , Nitrógeno , Concentración de Iones de Hidrógeno
18.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35564111

RESUMEN

Cerium oxide (CeO2) nanoparticles were synthesized with a chemical precipitation method in different experimental conditions using cerium nitrate hexahydrate (Ce(NO3)3·6H2O) as a precursor, modifying the solution pH, the reaction time, and Co atoms as dopants, in order to tune the band gap energy values of the prepared samples. The physical characteristics of the synthesized ceria nanoparticles were evaluated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis analyses and photoluminescence measurements. XRD data revealed a pure cubic fluorite structure of CeO2 NPs, the estimation of crystallite sizes by Scherrer's formula indicates the formation of crystals with dimensions between 11.24 and 21.65 nm. All samples contain nearly spherical CeO2 nanoparticles, as well as cubic, rhomboidal, triangular, or polyhedral nanoparticles that can be identified by TEM images. The optical investigation of CeO2 samples revealed that the band gap energy values are between 3.18 eV and 2.85 eV, and, after doping with Co atoms, the Eg of samples decreased to about 2.0 eV. In this study, we managed to obtain CeO2 NPs with Eg under 3.0 eV by only modifying the synthesis parameters. In addition, by doping with Co ions, the band gap energy value was lowered to 2.0 eV. This aspect leads to promising results that provide an encouraging approach for future photocatalytic investigations.

19.
Mater Sci Eng C Mater Biol Appl ; 122: 111894, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641897

RESUMEN

We formulated a pH-sensitive chlorhexidine-loaded mesoporous silica nanoparticles (MSN) modified with poly-(lactic-co-glycolic acid) (CHX-loaded/MSN-PLGA) and incorporated into experimental resin-based dentin adhesives at 5 and 10 wt%. Nanocarriers were characterized in terms of morphology, physicochemical features, spectral analyses, drug-release kinetics at varying pH and its effect on dentin-bound proteases was investigated. The modified dentin adhesives were characterized for cytotoxicity, antimicrobial activity, degree of conversion (DC) along with CHX release, micro-tensile bond strength (µTBS) and nano-leakage expression were studied at different pH values and storage time. CHX-loaded/MSN-PLGA nanocarriers exhibited a significant pH-dependent drug release behavior than CHX-loaded/MSN nanocarriers without PLGA modification. The highest percentage of CHX release was seen with 10 wt% CHX-loaded/MSN-PLGA doped adhesive at a pH of 5.0. CHX-loaded/MSN-PLGA modified adhesives exhibited more profound antibiofilm characteristics against S. mutans and more sustained CHX-release which was pH dependent. After 6 months in artificial saliva at varying pH, the 5 wt% CHX-loaded/MSN-PLGA doped adhesive showed excellent bonding under SEM/TEM, higher µTBS, and least nano-leakage expression. The pH-sensitive CHX-loaded/MSN-PLGA could be of crucial advantage for resin-dentin bonding applications especially in reduced pH microenvironment resulting from biofilm formation; and the activation of dentin-bound proteases as a consequence of acid etching and acidic content of bonding resin monomers.


Asunto(s)
Recubrimiento Dental Adhesivo , Nanopartículas , Clorhexidina , Dentina , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Cementos de Resina , Dióxido de Silicio , Resistencia a la Tracción
20.
J Hazard Mater ; 415: 125668, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34088180

RESUMEN

Effect of Fe redox state caused by low soil pe+pH levels on Cd uptake by rice is unclear. Rice grown in pots of Cd-contaminated paddy soil were subjected to different irrigation regimes: flooding, intermittent flooding (Int-FL), and sustained soil moisture at 70% water holding capacity (WHC). Results showed low pe+pH (5.52 and 7.09) in flooding treatment significantly increased relative abundances of Fe-reducing bacteria (FeRB) (6.29% and 4.51%), especially members within the Clostridium, Geobacter and Desulfuromonadia genera. Stimulation of FeRB activity induced Fe(III) reduction and increased Fe2+ content in flooded soils, which promoted Cd sequestration in low-crystalline fraction of IP (IP-Feh-Cd) and Cd bonded to amorphous Fe-oxides (amFeox-Cd). The 24.9-62.4% higher amFeox-Cd content was the important factor for 20.4-44.2% lower CaCl2-extractable Cd content in flooding treatment than those in other treatments. Soil submergence reduced Cd uptake by rice at tillering and booting stages, the critical periods of Cd transport in the soil-rice system, which was attributed to the increases in dissolved Fe2+ and IP-Feh-Cd contents and decrease in CaCl2-Cd content. Therefore, maintaining flooding during the tillering and booting stages may be an effective strategy to reduce Cd uptake by rice cultivated in Cd-contaminated soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA