Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(4): 1404-1420, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38647191

RESUMEN

PURPOSE: To investigate whether parallel imaging-imposed geometric coil constraints can be relaxed when using a deep learning (DL)-based image reconstruction method as opposed to a traditional non-DL method. THEORY AND METHODS: Traditional and DL-based MR image reconstruction approaches operate in fundamentally different ways: Traditional methods solve a system of equations derived from the image data whereas DL methods use data/target pairs to learn a generalizable reconstruction model. Two sets of head coil profiles were evaluated: (1) 8-channel and (2) 32-channel geometries. A DL model was compared to conjugate gradient SENSE (CG-SENSE) and L1-wavelet compressed sensing (CS) through quantitative metrics and visual assessment as coil overlap was increased. RESULTS: Results were generally consistent between experiments. As coil overlap increased, there was a significant (p < 0.001) decrease in performance in most cases for all methods. The decrease was most pronounced for CG-SENSE, and the DL models significantly outperformed (p < 0.001) their non-DL counterparts in all scenarios. CS showed improved robustness to coil overlap and signal-to-noise ratio (SNR) versus CG-SENSE, but had quantitatively and visually poorer reconstructions characterized by blurriness as compared to DL. DL showed virtually no change in performance across SNR and very small changes across coil overlap. CONCLUSION: The DL image reconstruction method produced images that were robust to coil overlap and of higher quality than CG-SENSE and CS. This suggests that geometric coil design constraints can be relaxed when using DL reconstruction methods.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Cabeza , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Relación Señal-Ruido , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Algoritmos , Fantasmas de Imagen
2.
Magn Reson Med ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860530

RESUMEN

PURPOSE: This study leverages externally generated Pilot Tone (PT) signals to perform motion-corrected brain MRI for sequences with arbitrary k-space sampling and image contrast. THEORY AND METHODS: PT signals are promising external motion sensors due to their cost-effectiveness, easy workflow, and consistent performance across contrasts and sampling patterns. However, they lack robust calibration pipelines. This work calibrates PT signal to rigid motion parameters acquired during short blocks (˜4 s) of motion calibration (MC) acquisitions, which are short enough to unobstructively fit between acquisitions. MC acquisitions leverage self-navigated trajectories that enable state-of-the-art motion estimation methods for efficient calibration. To capture the range of patient motion occurring throughout the examination, distributed motion calibration (DMC) uses data acquired from MC scans distributed across the entire examination. After calibration, PT is used to retrospectively motion-correct sequences with arbitrary k-space sampling and image contrast. Additionally, a data-driven calibration refinement is proposed to tailor calibration models to individual acquisitions. In vivo experiments involving 12 healthy volunteers tested the DMC protocol's ability to robustly correct subject motion. RESULTS: The proposed calibration pipeline produces pose parameters consistent with reference values, even when distributing only six of these approximately 4-s MC blocks, resulting in a total acquisition time of 22 s. In vivo motion experiments reveal significant ( p < 0.05 $$ p<0.05 $$ ) improved motion correction with increased signal to residual ratio for both MPRAGE and SPACE sequences with standard k-space acquisition, especially when motion is large. Additionally, results highlight the benefits of using a distributed calibration approach. CONCLUSIONS: This study presents a framework for performing motion-corrected brain MRI in sequences with arbitrary k-space encoding and contrast, using externally generated PT signals. The DMC protocol is introduced, promoting observation of patient motion occurring throughout the examination and providing a calibration pipeline suitable for clinical deployment. The method's application is demonstrated in standard volumetric MPRAGE and SPACE sequences.

3.
Magn Reson Med ; 91(5): 2028-2043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38173304

RESUMEN

PURPOSE: To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations ( δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS: Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion or δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS: Simulations and in vivo experiments show the need to model δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strong δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS: We developed a framework to jointly estimate rigid motion parameters and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion and δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Estudios Retrospectivos , Movimiento (Física) , Imagen por Resonancia Magnética/métodos , Neuroimagen , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen
4.
NMR Biomed ; 37(2): e5050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37857335

RESUMEN

Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2, and proton density from one single short scan. A typical two-dimensional (2D) MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the quantitative tissue maps are reconstructed by an iterative, model-based optimization algorithm. In this work, we design a three-dimensional (3D) MR-STAT framework based on previous 2D work, in order to achieve better image signal-to-noise ratio, higher though-plane resolution, and better tissue characterization. Specifically, we design a 7-min, high-resolution 3D MR-STAT sequence, and the corresponding two-step reconstruction algorithm for the large-scale dataset. To reduce the long acquisition time, Cartesian undersampling strategies such as SENSE are adopted in our transient-state quantitative framework. To reduce the computational burden, a data-splitting scheme is designed for decoupling the 3D reconstruction problem into independent 2D reconstructions. The proposed 3D framework is validated by numerical simulations, phantom experiments, and in vivo experiments. High-quality knee quantitative maps with 0.8 × 0.8 × 1.5 mm3 resolution and bilateral lower leg maps with 1.6 mm isotropic resolution can be acquired using the proposed 7-min acquisition sequence and the 3-min-per-slice decoupled reconstruction algorithm. The proposed 3D MR-STAT framework could have wide clinical applications in the future.


Asunto(s)
Imagenología Tridimensional , Imágenes de Resonancia Magnética Multiparamétrica , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo
5.
NMR Biomed ; 37(6): e5118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38342102

RESUMEN

Parallel imaging is one of the key MRI technologies that allow reduction of image acquisition time. However, the parallel imaging reconstruction commonly leads to a signal-to-noise ratio (SNR) drop evaluated using a so-called geometrical factor (g-factor). The g-factor is minimized by increasing the number of array elements and their spatial diversity. At the same time, increasing the element count requires a decrease in their size. This may lead to insufficient coil loading, an increase in the relative noise contribution from the RF coil itself, and hence SNR reduction. Previously, instead of increasing the channel number, we introduced the concept of electronically switchable time-varying sensitivities, which was shown to improve parallel imaging performance. In this approach, each reconfigurable receive element supports two spatially distinct sensitivity profiles. In this work, we developed and evaluated a novel eight-element human head receive-only reconfigurable coaxial dipole array for human head imaging at 9.4 T. In contrast to the previously reported reconfigurable dipole array, the new design does not include direct current (DC) control wires connected directly to the dipoles. The coaxial cable itself is used to deliver DC voltage to the PIN diodes located at the ends of the antennas. Thus, the novel reconfigurable coaxial dipole design opens a way to scale the dynamic parallel imaging up to a realistic number of channels, that is, 32 and above. The novel array was optimized and tested experimentally, including in vivo studies. It was found that dynamic sensitivity switching provided an 8% lower mean and 33% lower maximum g-factor (for Ry × Rz = 2 × 2 acceleration) compared with conventional static sensitivities.


Asunto(s)
Imagen por Resonancia Magnética , Relación Señal-Ruido , Imagen por Resonancia Magnética/instrumentación , Humanos , Fantasmas de Imagen , Diseño de Equipo , Encéfalo/diagnóstico por imagen
6.
J Cardiovasc Magn Reson ; 26(1): 100998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38237901

RESUMEN

Cardiac Magnetic Resonance (CMR) protocols can be lengthy and complex, which has driven the research community to develop new technologies to make these protocols more efficient and patient-friendly. Two different approaches to improving CMR have been proposed, specifically "all-in-one" CMR, where several contrasts and/or motion states are acquired simultaneously, and "real-time" CMR, in which the examination is accelerated to avoid the need for breathholding and/or cardiac gating. The goal of this two-part manuscript is to describe these two different types of emerging rapid CMR protocols. To this end, the vision of all-in-one and real-time imaging are described, along with techniques which have been devised and tested along the pathway of clinical implementation. The pros and cons of the different methods are presented, and the remaining open needs of each are detailed. Part 1 tackles the "All-in-One" approaches, and Part 2 focuses on the "Real-Time" approaches along with an overall summary of these emerging methods.


Asunto(s)
Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas , Humanos , Predicción , Cardiopatías/diagnóstico por imagen , Cardiopatías/fisiopatología , Factores de Tiempo , Interpretación de Imagen Asistida por Computador , Reproducibilidad de los Resultados , Difusión de Innovaciones
7.
J Cardiovasc Magn Reson ; 26(1): 100997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38237900

RESUMEN

Cardiovascular magnetic resonance (CMR) protocols can be lengthy and complex, which has driven the research community to develop new technologies to make these protocols more efficient and patient-friendly. Two different approaches to improving CMR have been proposed, specifically "all-in-one" CMR, where several contrasts and/or motion states are acquired simultaneously, and "real-time" CMR, in which the examination is accelerated to avoid the need for breathholding and/or cardiac gating. The goal of this two-part manuscript is to describe these two different types of emerging rapid CMR. To this end, the vision of each is described, along with techniques which have been devised and tested along the pathway of clinical implementation. The pros and cons of the different methods are presented, and the remaining open needs of each are detailed. Part 1 will tackle the "all-in-one" approaches, and Part 2 the "real-time" approaches along with an overall summary of these emerging methods.


Asunto(s)
Enfermedades Cardiovasculares , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas , Humanos , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/fisiopatología , Predicción , Interpretación de Imagen Asistida por Computador , Difusión de Innovaciones , Factores de Tiempo , Reproducibilidad de los Resultados , Pronóstico
8.
MAGMA ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758489

RESUMEN

OBJECTIVE: This study investigated the feasibility of using deep learning-based super-resolution (DL-SR) technique on low-resolution (LR) images to generate high-resolution (HR) MR images with the aim of scan time reduction. The efficacy of DL-SR was also assessed through the application of brain volume measurement (BVM). MATERIALS AND METHODS: In vivo brain images acquired with 3D-T1W from various MRI scanners were utilized. For model training, LR images were generated by downsampling the original 1 mm-2 mm isotropic resolution images. Pairs of LR and HR images were used for training 3D residual dense net (RDN). For model testing, actual scanned 2 mm isotropic resolution 3D-T1W images with one-minute scan time were used. Normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used for model evaluation. The evaluation also included brain volume measurement, with assessments of subcortical brain regions. RESULTS: The results showed that DL-SR model improved the quality of LR images compared with cubic interpolation, as indicated by NRMSE (24.22% vs 30.13%), PSNR (26.19 vs 24.65), and SSIM (0.96 vs 0.95). For volumetric assessments, there were no significant differences between DL-SR and actual HR images (p > 0.05, Pearson's correlation > 0.90) at seven subcortical regions. DISCUSSION: The combination of LR MRI and DL-SR enables addressing prolonged scan time in 3D MRI scans while providing sufficient image quality without affecting brain volume measurement.

9.
Skeletal Radiol ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441617

RESUMEN

Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80-90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.

10.
Magn Reson Med ; 89(5): 1777-1790, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36744619

RESUMEN

PURPOSE: To develop a robust retrospective motion-correction technique based on repeating k-space guidance lines for improving motion correction in Cartesian 2D and 3D brain MRI. METHODS: The motion guidance lines are inserted into the standard sequence orderings for 2D turbo spin echo and 3D MPRAGE to inform a data consistency-based motion estimation and reconstruction, which can be guided by a low-resolution scout. The extremely limited number of required guidance lines are repeated during each echo train and discarded in the final image reconstruction. Thus, integration within a standard k-space acquisition ordering ensures the expected image quality/contrast and motion sensitivity of that sequence. RESULTS: Through simulation and in vivo 2D multislice and 3D motion experiments, we demonstrate that respectively 2 or 4 optimized motion guidance lines per shot enables accurate motion estimation and correction. Clinically acceptable reconstruction times are achieved through fully separable on-the-fly motion optimizations (˜1 s/shot) using standard scanner GPU hardware. CONCLUSION: The addition of guidance lines to scout accelerated motion estimation facilitates robust retrospective motion correction that can be effectively introduced without perturbing standard clinical protocols and workflows.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Simulación por Computador , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos
11.
Magn Reson Med ; 90(5): 2190-2197, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37379476

RESUMEN

PURPOSE: The combination of SENSE and spiral imaging with fat/water separation enables high temporal efficiency. However, the corresponding computation increases due to the blurring/deblurring operation across the multi-channel data. This study presents two alternative models to simplify computational complexity in the original full model (model 1). The performances of the models are evaluated in terms of the computation time and reconstruction error. METHODS: Two approximated spiral MRI reconstruction models were proposed: the comprehensive blurring before coil operation (model 2) and the regional blurring before coil operation (model 3), respectively, by altering the order of coil-sensitivity encoding process to distribute signals among the multi-channel coils. Four subjects were recruited for scanning both fully sampled T1 - and T2 -weighted brain image data with simulated undersampling for testing the computational efficiency and accuracy on the approximation models. RESULTS: Based on the examples, the computation time can be reduced to 31%-47% using model 2, and to 39%-56% using model 3. The quality of the water image remains unchanged among the three models, whereas the primary difference in image quality is in the fat channel. The fat images from model 3 are consistent with those from model 1, but those from model 2 have higher normalized error, differing by up to 4.8%. CONCLUSION: Model 2 provides the fastest computation but exhibits higher error in the fat channel, particularly in the high field and with long acquisition window. Model 3, an abridged alternative, is also faster than the full model and can maintain high accuracy in reconstruction.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Agua , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagen
12.
Magn Reson Med ; 89(2): 812-827, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36226661

RESUMEN

PURPOSE: To evaluate an iterative learning approach for enhanced performance of robust artificial-neural-networks for k-space interpolation (RAKI), when only a limited amount of training data (auto-calibration signals [ACS]) are available for accelerated standard 2D imaging. METHODS: In a first step, the RAKI model was tailored for the case of limited training data amount. In the iterative learning approach (termed iterative RAKI [iRAKI]), the tailored RAKI model is initially trained using original and augmented ACS obtained from a linear parallel imaging reconstruction. Subsequently, the RAKI convolution filters are refined iteratively using original and augmented ACS extracted from the previous RAKI reconstruction. Evaluation was carried out on 200 retrospectively undersampled in vivo datasets from the fastMRI neuro database with different contrast settings. RESULTS: For limited training data (18 and 22 ACS lines for R = 4 and R = 5, respectively), iRAKI outperforms standard RAKI by reducing residual artifacts and yields better noise suppression when compared to standard parallel imaging, underlined by quantitative reconstruction quality metrics. Additionally, iRAKI shows better performance than both GRAPPA and standard RAKI in case of pre-scan calibration with varying contrast between training- and undersampled data. CONCLUSION: RAKI benefits from the iterative learning approach, which preserves the noise suppression feature, but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Estudios Retrospectivos , Redes Neurales de la Computación
13.
Magn Reson Med ; 89(4): 1531-1542, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36480000

RESUMEN

PURPOSE: To improve calibrationless parallel imaging using pre-learned subspaces of coil sensitivity functions. THEORY AND METHODS: A subspace-based joint sensitivity estimation and image reconstruction method was developed for improved parallel imaging with no calibration data. Specifically, we proposed to use a probabilistic subspace model to capture prior information of the coil sensitivity functions from previous scans acquired using the same receiver system. Both the subspace basis and coefficient distributions were learned from a small set of training data. The learned subspace model was then incorporated into the regularized reconstruction formalism that includes a sparsity prior. The nonlinear optimization problem was solved using alternating minimization algorithm. Public fastMRI brain dataset was retrospectively undersampled by different schemes for performance evaluation of the proposed method. RESULTS: With no calibration data, the proposed method consistently produced the most accurate coil sensitivity estimation and highest quality image reconstructions at all acceleration factors tested in comparison with state-of-the-art methods including JSENSE, DeepSENSE, P-LORAKS, and Sparse BLIP. Our results are comparable to or even better than those from SparseSENSE, which used calibration data for sensitivity estimation. The work also demonstrated that the probabilistic subspace model learned from T2 w data can be generalized to aiding the reconstruction of FLAIR data acquired from the same receiver system. CONCLUSION: A subspace-based method named JSENSE-Pro has been proposed for accelerated parallel imaging without the acquisition of companion calibration data. The method is expected to further enhance the practical utility of parallel imaging, especially in applications where calibration data acquisition is not desirable or limited.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Sensibilidad y Especificidad , Aumento de la Imagen/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
14.
Magn Reson Med ; 89(2): 678-693, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36254526

RESUMEN

PURPOSE: To develop a deep-learning-based image reconstruction framework for reproducible research in MRI. METHODS: The BART toolbox offers a rich set of implementations of calibration and reconstruction algorithms for parallel imaging and compressed sensing. In this work, BART was extended by a nonlinear operator framework that provides automatic differentiation to allow computation of gradients. Existing MRI-specific operators of BART, such as the nonuniform fast Fourier transform, are directly integrated into this framework and are complemented by common building blocks used in neural networks. To evaluate the use of the framework for advanced deep-learning-based reconstruction, two state-of-the-art unrolled reconstruction networks, namely the Variational Network and MoDL, were implemented. RESULTS: State-of-the-art deep image-reconstruction networks can be constructed and trained using BART's gradient-based optimization algorithms. The BART implementation achieves a similar performance in terms of training time and reconstruction quality compared to the original implementations based on TensorFlow. CONCLUSION: By integrating nonlinear operators and neural networks into BART, we provide a general framework for deep-learning-based reconstruction in MRI.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Algoritmos , Calibración , Procesamiento de Imagen Asistido por Computador/métodos
15.
Magn Reson Med ; 89(2): 536-549, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36198001

RESUMEN

PURPOSE: Through-time spiral GRAPPA is a real-time imaging technique that enables ungated, free-breathing evaluation of the left ventricle. However, it requires a separate fully-sampled calibration scan to calculate GRAPPA weights. A self-calibrated through-time spiral GRAPPA method is proposed that uses a specially designed spiral trajectory with interleaved arm ordering such that consecutive undersampled frames can be merged to form calibration data, eliminating the separate fully-sampled acquisition. THEORY AND METHODS: The proposed method considers the time needed to acquire data at all points in a GRAPPA calibration kernel when using interleaved arm ordering. Using this metric, simulations were performed to design a spiral trajectory for self-calibrated GRAPPA. Data were acquired in healthy volunteers using the proposed method and a comparison electrocardiogram-gated and breath-held cine scan. Left ventricular functional values and image quality are compared. RESULTS: A 12-arm spiral trajectory was designed with a temporal resolution of 32.72 ms/cardiac phase with an acceleration factor of 3. Functional values calculated using the proposed method and the gold-standard method were not statistically significantly different (paired t-test, p < 0.05). Image quality ratings were lower for the proposed method, with statistically significantly different ratings (Wilcoxon signed rank test, p < 0.05) for two of five image quality aspects rated (level of artifact, blood-myocardium contrast). CONCLUSIONS: A self-calibrated through-time spiral GRAPPA reconstruction can enable ungated, free-breathing evaluation of the left ventricle in 71 s. Functional values are equivalent to a gold-standard cine technique, although some aspects of image quality may be inferior due to the real-time nature of the data collection.


Asunto(s)
Respiración , Función Ventricular Izquierda , Humanos , Artefactos , Contencion de la Respiración , Corazón , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados
16.
Magn Reson Med ; 90(3): 963-977, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37125656

RESUMEN

PURPOSE: MRI is increasingly utilized for image-guided radiotherapy due to its outstanding soft-tissue contrast and lack of ionizing radiation. However, geometric distortions caused by gradient nonlinearities (GNLs) limit anatomical accuracy, potentially compromising the quality of tumor treatments. In addition, slow MR acquisition and reconstruction limit the potential for effective image guidance. Here, we demonstrate a deep learning-based method that rapidly reconstructs distortion-corrected images from raw k-space data for MR-guided radiotherapy applications. METHODS: We leverage recent advances in interpretable unrolling networks to develop a Distortion-Corrected Reconstruction Network (DCReconNet) that applies convolutional neural networks (CNNs) to learn effective regularizations and nonuniform fast Fourier transforms for GNL-encoding. DCReconNet was trained on a public MR brain dataset from 11 healthy volunteers for fully sampled and accelerated techniques, including parallel imaging (PI) and compressed sensing (CS). The performance of DCReconNet was tested on phantom, brain, pelvis, and lung images acquired on a 1.0T MRI-Linac. The DCReconNet, CS-, PI-and UNet-based reconstructed image quality was measured by structural similarity (SSIM) and RMS error (RMSE) for numerical comparisons. The computation time and residual distortion for each method were also reported. RESULTS: Imaging results demonstrated that DCReconNet better preserves image structures compared to CS- and PI-based reconstruction methods. DCReconNet resulted in the highest SSIM (0.95 median value) and lowest RMSE (<0.04) on simulated brain images with four times acceleration. DCReconNet is over 10-times faster than iterative, regularized reconstruction methods. CONCLUSIONS: DCReconNet provides fast and geometrically accurate image reconstruction and has the potential for MRI-guided radiotherapy applications.


Asunto(s)
Aprendizaje Profundo , Radioterapia Guiada por Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Pulmón/patología , Humanos
17.
Magn Reson Med ; 90(4): 1713-1727, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37332195

RESUMEN

PURPOSE: To extend the concept of 3D dynamic parallel imaging, we developed a prototype of an electronically reconfigurable dipole array that provides sensitivity alteration along the dipole length. METHODS: We developed a radiofrequency array coil consisting of eight reconfigurable elevated-end dipole antennas. The receive sensitivity profile of each dipole can be electronically shifted toward one or the other end by electrical shortening or lengthening the dipole arms using positive-intrinsic-negative-diode lump-element switching units. Based on the results of electromagnetic simulations, we built the prototype and tested it at 9.4 T on phantom and healthy volunteer. A modified 3D SENSE reconstruction was used, and geometry factor (g-factor) calculations were performed to assess the new array coil. RESULTS: Electromagnetic simulations showed that the new array coil was capable of alteration of its receive sensitivity profile along the dipole length. Electromagnetic and g-factor simulations showed closely agreeing predictions when compared to the measurements. The new dynamically reconfigurable dipole array provided significant improvement in geometry factor compared to static dipoles. We obtained up to 220% improvement for 3 × 2 (Ry × Rz ) acceleration compared to the static configuration case in terms of maximum g-factor and up to 54% in terms of mean g-factor for the same acceleration. CONCLUSION: We presented an 8-element prototype of a novel electronically reconfigurable dipole receive array that permits rapid sensitivity modulations along the dipole axes. Applying dynamic sensitivity modulation during image acquisition emulates two virtual rows of receive elements along the z-direction, and therefore improves parallel imaging performance for 3D acquisitions.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Diseño de Equipo , Imagenología Tridimensional , Fantasmas de Imagen , Ondas de Radio
18.
Magn Reson Med ; 90(4): 1547-1554, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345705

RESUMEN

PURPOSE: To show that the acoustic noise of spiral MRI can be reduced by derating the gradients with minimal penalty to image quality and scan time, and to illustrate an algorithm for optimal choice of derating parameters. THEORY AND METHODS: Acoustic noise level was measured and compared for various values of maximum gradient amplitude and slew rate for T1 -weighted spin-echo spiral scans while maintaining image contrast, FOV and resolution, and readout time. A full gradient trajectory and a derated gradient (undersampled) trajectory were chosen for a volunteer scan followed by parallel imaging-aided reconstruction to illustrate comparable image SNR. Two auto-derating methods, which prioritize slew rate and gradient amplitude, respectively, were derived using analytical results from the WHIRLED PEAS variant of spiral waveforms and compared in their acoustic noise level under test use cases. RESULTS: Derating the gradients made the scan quieter by 16.6 dB(A) on average than a full gradient trajectory and required an undersampling factor R = 2 in order to maintain scan time, with no appreciable penalty in image SNR. Prioritizing reduced slew rate resulted in maximal loudness reduction. CONCLUSION: Scanner gradients can often be derated to reduce the acoustic noise for spiral MRI with minimal penalty in scan time and image quality with the help of parallel imaging. An automatic slew-priority derating method that maximizes loudness reduction is given.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Algoritmos , Acústica
19.
Magn Reson Med ; 89(5): 1839-1852, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36533875

RESUMEN

PURPOSE: To develop a new motion-resolved real-time four-dimensional (4D) flow MRI method, which enables the quantification and visualization of blood flow velocities with three-directional flow encodings and volumetric coverage without electrocardiogram (ECG) synchronization and respiration control. METHODS: An integrated imaging method is presented for real-time 4D flow MRI, which encompasses data acquisition, image reconstruction, and postprocessing. The proposed method features a specialized continuous ( k , t ) $$ \left(\mathbf{k},t\right) $$ -space acquisition scheme, which collects two sets of data (i.e., training data and imaging data) in an interleaved manner. By exploiting strong spatiotemporal correlation of 4D flow data, it reconstructs time-series images from highly-undersampled ( k , t ) $$ \left(\mathbf{k},t\right) $$ -space measurements with a low-rank and subspace model. Through data-binning-based postprocessing, it constructs a five-dimensional dataset (i.e., x-y-z-cardiac-respiratory), from which respiration-dependent flow information is further analyzed. The proposed method was evaluated in aortic flow imaging experiments with ten healthy subjects and two patients with atrial fibrillation. RESULTS: The proposed method achieves 2.4 mm isotropic spatial resolution and 34.4 ms temporal resolution for measuring the blood flow of the aorta. For the healthy subjects, it provides flow measurements in good agreement with those from the conventional 4D flow MRI technique. For the patients with atrial fibrillation, it is able to resolve beat-by-beat pathological flow variations, which cannot be obtained from the conventional technique. The postprocessing further provides respiration-dependent flow information. CONCLUSION: The proposed method enables high-resolution motion-resolved real-time 4D flow imaging without ECG gating and respiration control. It is able to resolve beat-by-beat blood flow variations as well as respiration-dependent flow information.


Asunto(s)
Fibrilación Atrial , Humanos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Velocidad del Flujo Sanguíneo , Imagenología Tridimensional/métodos
20.
Magn Reson Med ; 90(6): 2592-2607, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37582214

RESUMEN

PURPOSE: A 128-channel receive-only array for brain imaging at 7 T was simulated, designed, constructed, and tested within a high-performance head gradient designed for high-resolution functional imaging. METHODS: The coil used a tight-fitting helmet geometry populated with 128 loop elements and preamplifiers to fit into a 39 cm diameter space inside a built-in gradient. The signal-to-noise ratio (SNR) and parallel imaging performance (1/g) were measured in vivo and simulated using electromagnetic modeling. The histogram of 1/g factors was analyzed to assess the range of performance. The array's performance was compared to the industry-standard 32-channel receive array and a 64-channel research array. RESULTS: It was possible to construct the 128-channel array with body noise-dominated loops producing an average noise correlation of 5.4%. Measurements showed increased sensitivity compared with the 32-channel and 64-channel array through a combination of higher intrinsic SNR and g-factor improvements. For unaccelerated imaging, the 128-channel array showed SNR gains of 17.6% and 9.3% compared to the 32-channel and 64-channel array, respectively, at the center of the brain and 42% and 18% higher SNR in the peripheral brain regions including the cortex. For R = 5 accelerated imaging, these gains were 44.2% and 24.3% at the brain center and 86.7% and 48.7% in the cortex. The 1/g-factor histograms show both an improved mean and a tighter distribution by increasing the channel count, with both effects becoming more pronounced at higher accelerations. CONCLUSION: The experimental results confirm that increasing the channel count to 128 channels is beneficial for 7T brain imaging, both for increasing SNR in peripheral brain regions and for accelerated imaging.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Relación Señal-Ruido , Fantasmas de Imagen , Neuroimagen/métodos , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA