Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 22(11): 4560-4568, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583326

RESUMEN

Polyimide aerogels with mechanical robustness, great compressibility, excellent antifatigue properties, and intriguing functionality have captured enormous attention in diverse applications. Here, enlightened by the xylem parenchyma of dicotyledonous stems, a radially architectured polyimide/MXene composite aerogel (RPIMX) with reversible compressibility is developed by combining the interfacial enhancing strategy and radial ice-templating method. The strong interaction between MXene flakes and polymer can glue the MXene to form continuous lamellae, the ice crystals grow preferentially along the radial temperature gradient can effectively constrain the lamellae to create a biomimetic radial lamellar architecture. As a result, the nature-inspired RPIMX composite aerogel with centrosymmetric lamellar structure and oriented channels manifests excellent mechanical strength, electrical conductivity, and water transporting capability along the longitudinal direction, endowing itself with intriguing applications for accurate human motion monitoring and efficient photothermal evaporation. These exciting properties make the biomimetic RPIMX aerogels promising candidates for flexible piezoresistive sensors and photothermal evaporators.


Asunto(s)
Hielo , Vapor , Conductividad Eléctrica , Humanos , Luz Solar , Xilema
2.
Chemosphere ; 351: 141129, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199497

RESUMEN

The emergence of two-dimensional (2D) MXenes as efficient light-to-heat conversion materials offers significant potential for solar-based desalination, particularly in photothermal interfacial evaporation, enabling cost-effective solar-powered membrane distillation (MD). This study investigates solar-powered MD afforded by a photothermally functionalized spacer, which is built by spray-coating Ti3C2Tx MXene sheets on metallic spacers. 2D Ti3C2Tx MXene gives an ultrahigh photothermal conversion efficiency; thereby, by Ti3C2Tx MXene-coated metallic spacer, this rationally designed spacer allows for a localized photothermal conversion and interfacial feed heating effect on the membrane surface, especially for MD operation. As a feed spacer and a photothermal element, Ti3C2Tx MXene-coated metallic spacer exhibited stable enhanced water flux of up to 0.36 kg·m-2h-1 under one sun illumination for a feed salinity of 35 g·L-1, corresponding energy conversion efficiency of 28.3 %. Overall, the developed photothermal Ti3C2Tx MXene-coated spacers displayed great potential in enhancing the performance, scalability, and feasibility of solar-driven MD process, paving the way for further development of photothermal elements that can be implemented in solar MD applications.


Asunto(s)
Destilación , Nitritos , Energía Solar , Elementos de Transición , Calefacción , Titanio
3.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37177254

RESUMEN

Because of the increasing scarcity of water resources, the desalination of seawater by photothermal evaporation with harvested solar energy has gradually become a popular research topic. The interconnected macroporous cryogel prepared from polymerization and crosslinking below the freezing temperature of the reactant solution has an excellent performance in photothermal water evaporation after loading photothermal materials. In this study, polyacrylamide (PAM) cryogels were prepared by cryo-polymerization and sulfonated in an alkaline solution containing formaldehyde and Na2SO3. Importantly, the evaporation enthalpy of water in sulfonated PAM cryogel was reduced to 1187 J·g-1 due to the introduction of sulfonate groups into PAM, which was beneficial to increase the photothermal evaporation rate and efficiency. The sulfonated PAM cryogels loaded with polypyrrole and the umbrella-shaped melamine foam substrate were combined to form a photothermal evaporation device, and the evaporation rate was as high as 2.50 kg·m-2·h-1 under one-sun radiation. Meanwhile, the evaporation rate reached 2.09 kg·m-2·h-1 in the 14 wt% high-concentration saline solution, and no salt crystals appeared on the surface of the cryogel after 5 h of photothermal evaporation. Therefore, it was evidenced that the presence of sulfonate groups not only reduced the evaporation enthalpy of water but also prevented salting-out from blocking the water delivery channel during photothermal evaporation, with a sufficiently high evaporation rate, providing a reliable idea of matrix modification for the design of high-efficiency photothermal evaporation materials.

4.
J Colloid Interface Sci ; 633: 628-639, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36481423

RESUMEN

Photothermal evaporation using solar energy is a sustainable way to produce fresh water from seawater. Aiming to explore functional materials as a solar-energized evaporator with enhanced evaporation rate and pollutant tolerance, this study was to synthesize a self-floating composite graphene aerogel (GA) doped with Enteromorpha and modified polyethylene glycol (PEG), named as PEGA using solar energy for desalination. Physio-chemical properties and evaporative mechanism of PEGA were experimentally investigated and analyzed with respect to molecular weight, PEG dosage, and ratio of Enteromorpha and graphene oxide. Experimental data revealed that the modification of PEG improved hydrophilic functional ability of PEGA, resulting in increasing the evaporation rate and photothermal conversion efficiency up to 2.55 kg/(m2·h) and 105.71 %, respectively. The ion removal rate of seawater exceeds 99.99 % via the PEGA conducted solar evaporation. Furthermore, PEGA possessed an excellent property of salinity emulsion pollution tolerance. Particularly, the evaporation rate of the PEG-modified biomass-based aerogel was 2.84 kg/(m2·h) in a 15 wt% NaCl solution (1 sun, 6 h) and 2.50 kg/(m2·h) at 1 h. The formation of hydrogen bonds between -OH of PEG and water molecules assist to conduct water along the graphene matrix to improve water evaporation. The cost of the graphene aerogel modified by Enteromorpha was reduced by 38.88 % less than the original graphene aerogel. The results from this study will greatly promote the application of graphene aerogel for desalination via solar evaporation.


Asunto(s)
Contaminantes Ambientales , Grafito , Energía Solar , Biomasa , Polietilenglicoles
5.
Water Res ; 212: 118099, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077941

RESUMEN

Interfacial solar steam generation is an efficient way to produce freshwater from saline water. This technology was further harnessed here for simultaneous saline soil remediation and enhanced agricultural sustainability. An interfacial solar evaporation and planting system was designed that uses treated seawater for saline soil washing and agricultural irrigation. In outdoor experiments the evaporator realized high freshwater production (10.95 kg m-2 day-1) with a soil washing efficiency 3 times greater than traditional distillation. Post treatment plant assays showed that initially highly saline soils could be restored to functional agricultural soils with germination rates of 65% after soil washing, where solar evaporation could continuously provide irrigation water for plant growth. This system is fully automated and uses only solar energy and seawater for saline soil remediation and irrigation. The development of this system provides a potentially useful solution to alleviate global problems associated with water scarcity, soil salinization, and desertification.


Asunto(s)
Purificación del Agua , Agricultura , Agua de Mar , Suelo , Luz Solar
6.
Exploration (Beijing) ; 2(4): 20220054, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37325603

RESUMEN

Forward osmosis (FO) driven by osmotic pressure difference has great potential in water treatment. However, it remains a challenge to maintain a steady water flux at continuous operation. Herein, a FO and photothermal evaporation (PE) coupling system (FO-PE) based on high-performance polyamide FO membrane and photothermal polypyrrole nano-sponge (PPy/sponge) is developed for continuous FO separation with a steady water flux. The PE unit with a photothermal PPy/sponge floating on the surface of draw solution (DS) can continuously in situ concentrate DS by solar-driven interfacial water evaporation, which effectively offsets the dilution effect due to the injected water from FO unit. A good balance between the permeated water in FO and the evaporated water in PE can be established by coordinately regulating the initial concentration of DS and light intensity. As a consequence, the polyamide FO membrane exhibits a steady water flux of 11.7 L m-2 h-1 over time under FO coupling PE condition, effectively alleviating the decline in water flux under FO alone. Additionally, it shows a low reverse salt flux of 3 g m-2 h-1. The FO-PE coupling system utilizing clean and renewable solar energy to achieve a continuous FO separation is significantly meaningful for practical applications.

7.
ACS Appl Mater Interfaces ; 14(17): 19409-19418, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446540

RESUMEN

Solar-driven photothermal interfacial evaporation is considered as one of the most promising strategies in seawater desalination and wastewater treatment. In desalination, evaporation efficiency and salt resistance are regarded as two inter-constraint measures. Thus, it is still challenging to fabricate solar evaporators with both high evaporation efficiency and excellent salt resistance. In the present work, a self-floating Janus sponge composed of hydrophobic carbon black (CB) coating and hydrophilic porous thermoplastic polyurethane-carbon nanotube (TPC) nanofibrous substrate (TPC@CB) is fabricated via a simple electrospinning and gas templating expansion method. Attributing to the unique trilaminar functional architecture: the upper superhydrophobic solar-absorption coating, the intermediate ultrathin heat localization layer, and the lower cellular thermal insulation layer, the Janus TPC@CB sponge exhibits high evaporation efficiency (1.80 kg m-2 h-1 with an energy efficiency of 97.2% under 1.0 solar irradiation) and outstanding salt resistance ability. Moreover, zero liquid discharge in salt-containing wastewater treatment is realized using the Janus TPC@CB sponge as a solar-driven photothermal medium. This work provides a promising approach to seawater desalination and wastewater treatment.

8.
Adv Sci (Weinh) ; 7(5): 1902236, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32154070

RESUMEN

Water shortage is one of the most concerning global challenges in the 21st century. Solar-inspired vaporization employing photothermal nanomaterials is considered to be a feasible and green technology for addressing the water challenge by virtue of abundant and clean solar energy. 2D nanomaterials aroused considerable attention in photothermal evaporation-induced water production owing to their large absorption surface, strong absorption in broadband solar spectrum, and efficient photothermal conversion. Herein, the recent progress of 2D nanomaterials-based photothermal evaporation, mainly including emerging Xenes (phosphorene, antimonene, tellurene, and borophene) and binary-enes (MXenes and transition metal dichalcogenides), is reviewed. Then, the optimization strategies for higher evaporation performance are summarized in terms of modulation of the intrinsic photothermal performance of 2D nanomaterials and design of the complete evaporation system. Finally, the challenges and prospective of various kinds of 2D photothermal nanomaterials are discussed in terms of the photothermal performance, stability, environmental influence, and cost. One important principle is that solutions for water challenges should not introduce new environmental and social problems. This Review aims to highlight the role of 2D photothermal nanomaterials in solving water challenges and provides a viable scheme toward the practical use in photothermal materials selection, design, and evaporation systems building.

9.
ACS Appl Mater Interfaces ; 12(19): 22387-22397, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32321236

RESUMEN

Seawater desalination via solar energy has potential to alleviate freshwater scarcity. However, problems including insufficient air-water interface, large heat loss, and potential ecological impact have restricted its practical viability. Here, a novel wood-derived indirect-contact (hanging) photothermal evaporation system was designed. An evaporation rate of 1.351 kg·m-2·h-1 with efficiency up to 90.89% under one sun illumination (1 kW·m-2) was achieved, which is the highest record to the best of our knowledge. More importantly, a series of simulations and numerical modeling were carried out to analyze the main factors affecting seawater collection and evaporation, and the synergetic mechanisms of oriented seawater collection, photothermal thermogenesis, and natural convection were elucidated. Taken together, this study provides a new wood-derived hanging seawater desalination system with superior mechanical strength, good repeatability, great ecological security, and excellent thermal stability. The corresponding mechanisms of the whole process are shown, and the seawater evaporation efficiency approaching the real demand is maximized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA