Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Macromol Rapid Commun ; : e2400450, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072911

RESUMEN

Polymer-metal complexes (PMCs) based on poly(2,2'-bipyridine-4,4'-dicarboxamide-co-polydimethylsiloxanes) with cyclometalated di(2-phenylpyridinato-C2,N')iridium(III) fragments and cross-linked by Zn2+ (Zn[Ir]-BipyPDMSs) or Ir3+ (Ir[Ir]-BipyPDMSs) represent flexible, stretchable, phosphorescent, and self-healing molecular oxygen sensors. PMCs provide strong phosphorescence at λem = 595-605 nm. Zn[Ir]-BipyPDMS with PDMS chain length of Mn = 5000 has the highest quantum yield of 9.3% and is a molecular oxygen sensor at different O2 concentrations (0-100 vol%) compared to Ir[Ir]-BipyPDMSs. A Stern-Volmer constant is determined for Zn[Ir]-BipyPDMS as KSV = 0.014%-1, which is similar to the reported oxygen-sensitive iridium(III) complexes. All synthesized PMCs exhibit high elongation at break (up to 1100%) and self-healing efficiency (up to 99%).

2.
Luminescence ; 39(3): e4723, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38516725

RESUMEN

The investigation of thermoluminescence (TL) glow curves in liquid crystalline side chain N-phenyl-substituted phenyl polysiloxane hydroxamic acids (PHAs) has yielded significant insights. These polymers demonstrated TL behavior when exposed to ß-radiation between 0 and 220°C, indicating inherent luminescent properties when irradiated. Notably, a dose-dependent relationship was observed in reported derivatized polymers; this study elucidates the diverse TL characteristics exhibited by various liquid crystalline side chain N-phenyl-substituted phenyl PHAs when exposed to ß-radiation. Understanding these dose-dependent and dose-independent behaviors enhances the knowledge of their luminescent properties and potential applications in radiation detection.


Asunto(s)
Luminiscencia , Siloxanos , Dosimetría Termoluminiscente
3.
Small ; 19(41): e2303079, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37317021

RESUMEN

Silicon oxycarbide (SiOC) materials have arisen in the past few decades as a promising new class of glasses and glass-ceramics thanks to their advantageous chemical and thermal properties. Many applications, such as ion storage, sensing, filtering, or catalysis, require materials or coatings with high surface area and might benefit from the high thermal stability of SiOC. This work reports the first facile bottom-up approach to textured high surface area SiOC coatings obtained via direct pyrolysis of polysiloxane structures of well-defined shapes, such as nanofilaments or microrods. This work further investigates the thermal behavior of these structures by means of FT-IR, SEM, and EDX up to 1400 °C. The rods shrink in volume by ≈30% while their aspect ratio remains unaffected by pyrolysis until at least 1100 °C. The nano-sized filaments show signs of viscous flow already at a comparably low temperature of 900 °C which is very probably due to the nano-size effect. This might open a way to experimentally study the size-effect on the glass transition temperature of oxide glasses, an experimentally unexplored but very relevant topic. These structures have great potential, for example, as ion storage materials and supports in high temperature catalysis and CO2 conversion.

4.
Macromol Rapid Commun ; 44(19): e2300233, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37366221

RESUMEN

In this study, a series of ladder-like polysiloxanes are synthesized by introducing double-chain Si-O-Si polymer as the backbone and the carbazole and triphenylphosphine oxide with high triplet energy as side groups. The ladder-like structures of polysiloxanes are achieved through a controlled polymerization method that involves the monomer self-assembly and subsequent surface-restricted solid-phase in situ condensation through freeze-drying. The introduction of siloxane improves thermal stability of the polymers and inhibits the conjugation of the polymers between the side groups, leading to an increase in the triplet energy level. Therefore, all these polymers perform higher triplet energy levels than phosphorescent emitter (FIrpic). The cyclic voltammetry measurements demonstrate that the bipolar polymer exhibits a high highest occupied molecular orbital (HOMO) value of -5.32 eV, which is consistent with the work function of ITO/PEDOT:PSS, consequently facilitating hole injection. Furthermore, the incorporation of triphenylphosphine oxide promotes electron injection. Molecular simulations reveal that the frontier orbital distributions of the bipolar polymer are located on the carbazole and triphenylphosphine groups, respectively, which facilitate the transport of electrons and holes.


Asunto(s)
Polímeros , Siloxanos , Carbazoles , Oxígeno
5.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615618

RESUMEN

Novel spherically shaped organosilica materials with (propyl)ethylenediamine groups were obtained via a modified one-pot Stöber co-condensation method. The porosity of these materials was tuned with the controlled addition of three silica monomers acting as structuring agents (tetraethoxysilane and bridged silanes with ethylene and phenylene bridges). The morphologies and structures of the synthesized materials were studied by SEM, DRIFT spectroscopy, CHNS elemental analysis, low-temperature nitrogen adsorption-desorption, and electrokinetic potential measurements. Their sizes were in the range of 50 to 100 nm, depending on the amount of structuring silane used in the reaction. The degree of the particles' agglomeration determined the mesoporosity of the samples. The content of the (propyl)ethylenediamine groups was directly related with the amount of functional silane used in the reaction. The zeta potential measurements indicated the presence of silanol groups in bissilane-based samples, which added new active centers on the surface and reduced the activity of the amino groups. The static sorption capacities (SSCs) of the obtained samples towards Cu(II), Ni(II), and Eu(III) ions depended on the porosity of the samples and the spatial arrangement of the ethylenediamine groups; therefore, the SSC values were not always higher for the samples with the largest number of groups. The highest SSC values achieved were 1.8 mmolCu(II)/g (for ethylene-bridged samples), 0.83 mmolNi(II)/g (for phenylene-bridged samples), and 0.55 mmolEu(III)/g (for tetraethoxysilane-based samples).

6.
Macromol Rapid Commun ; 43(16): e2200064, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35218087

RESUMEN

Blue-emitting thermally activated delayed fluorescence (TADF) polymers are still in demand for high-efficiency display materials. Through-space charge transfer (TSCT) strategy is promising for keeping color purity of blue-emitting polymers with nonconjugated main chains. It is, however, hard to synthesize copolymers with well-dispersed donors or acceptors utilizing traditional polyethylene backbones via radical polymerization. Herein, two series of blue-emitting polysiloxane with TADF properties, random and order-controlled copolysiloxanes, are successfully designed and synthesized and their photophysical properties are investigated and compared in detail. All of them display short prompt and delay fluorescence lifetimes and a very fast reverse intersystem crossing (RISC) rate of 107 s-1 . Compared with random copolysiloxanes, acceptors are well separated by donors for order-controlled copolysiloxanes, which exhibit the faster RISC processes and the higher photoluminescence quantum yield. Therefore, the order-controlled architecture provides a guide for improving light-emitting efficiency of TSCT-type TADF polymers.

7.
Macromol Rapid Commun ; 43(15): e2200120, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35396766

RESUMEN

Donor-acceptor Stenhouse adducts (DASAs) are a rapidly emerging class of visible light-activated photochromes and DASA-functionalized polymers hold great promise as biocompatible photoresponsive materials. However, the photoswitching performance of DASAs in solid polymer matrices is often low, particularly in materials below their glass transition temperature. To overcome this limitation, DASAs are conjugated to polydimethylsiloxanes which have a glass transition temperature far below room temperature and which can create a mobile molecular environment around the DASAs for achieving more solution-like photoswitching kinetics in bulk polymers. The dispersion of DASAs conjugated to such flexible oligomers into solid polymer matrices allows for more effective and tunable DASA photoswitching in stiff polymers, such as poly(methyl methacrylate), without requiring modifications of the matrix. The photoswitching of conjugates with varying polymer molecular weight, linker type, and architecture is characterized via time-dependent UV-vis spectroscopy in organic solvents and blended into polymethacrylate films. In addition, DASA-functionalized polydimethylsiloxane networks, accessible via the same synthetic route, provide an alternative solution for achieving fast and efficient DASA photoswitching in the bulk owing to their intrinsic softness and flexibility. These findings may contribute to the development of DASA-functionalized materials with better tunable, more effective, and more reversible modulation of their optical properties.


Asunto(s)
Dimetilpolisiloxanos , Polímeros , Materiales Biocompatibles , Luz , Polímeros/química , Temperatura
8.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270038

RESUMEN

Nanocomposites developed based on siloxanes modified with carbon nanoforms are materials with great application potential in the electronics industry, medicine and environmental protection. This follows from the fact that such nanocomposites can be endowed with biocompatibility characteristics, electric conductivity and a high mechanical durability. Moreover, their surface, depending on the type and the amount of carbon nanoparticles, may exhibit antifouling properties, as well as those that limit bacterial adhesion. The paper reports on the properties of polysiloxane (PS) and carbon nanotubes (CNT) nanocomposite coatings on metal surfaces produced by the electrophoretic deposition (EPD). A comparison with coatings made of pure PS or pure CNT on the same substrates using the same deposition method (EPD) is provided. The coatings were examined for morphology and elemental composition (SEM, EDS), structural characteristics (confocal Raman spectroscopy), electrical conductivity and were tested for corrosion (electrochemical impedance spectroscopy-EIS, potentiodynamic polarization-PDP). The results obtained in this study clearly evidenced that such hybrid coatings conduct electricity and protect the metal from corrosion. However, their corrosion resistance differs slightly from that of a pure polymeric coating.


Asunto(s)
Nanotubos de Carbono , Materiales Biocompatibles Revestidos/química , Corrosión , Durapatita/química , Conductividad Eléctrica , Nanotubos de Carbono/química , Siloxanos
9.
Chemistry ; 27(29): 7897-7907, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33783909

RESUMEN

Ring-opening copolymerization (ROCP) of benzylsulfonyl macroheterocyclosiloxane (BSM) and five different cyclosiloxanes was systematically investigated. A general approach for the synthesis of benzylsulfonyl-containing silicone copolymers with various substituents, including methyl, vinyl, ethyl, and phenyl, was developed herein. A series of copolymers with variable incorporation (from 6 % to 82 %) of BSM were obtained by modifying the comonomer feed ratio and using KOH as the catalyst in a mixed solvent of dimethylformamide and toluene. The obtained copolymers exhibited various composition-dependent properties and unique viscoelasticity. Notably, the surface and fluorescent characteristics as well as the glass transition temperatures of the copolymers could be tailored by varying the amount of BSM. Unlike typical sulfone-containing polymers, such as poly(olefin sulfone)s, the prepared copolymers displayed excellent thermal and hydrolytic stability. The universal strategy developed in the present study provides a platform for the design of innovative silicone copolymers with adjustable structures and performance.

10.
Molecules ; 26(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557279

RESUMEN

Intrinsic hydrophobicity is the reason for efficient bacterial settlement and biofilm growth on silicone materials. Those unwelcomed phenomena may play an important role in pathogen transmission. We have proposed an approach towards the development of new anti-biofilm strategies that resulted in novel antimicrobial hydrophobic silicones. Those functionalized polysiloxanes grafted with side 2-(carboxymethylthioethyl)-, 2-(n-propylamidomethylthioethyl)- and 2-(mercaptoethylamidomethylthioethyl)- groups showed a wide range of antimicrobial properties towards selected strains of bacteria (reference strains Staphylococcus aureus, Escherichia coli and water-borne isolates Agrobacterium tumefaciens, Aeromonas hydrophila), fungi (Aureobasidium pullulans) and algae (Chlorella vulgaris), which makes them valuable antibacterial and antibiofilm agents. Tested microorganisms showed various levels of biofilm formation, but particularly effective antibiofilm activity was demonstrated for bacterial isolate A. hydrophila with high adhesion abilities. In the case of modified surfaces, the relative coefficient of adhesion for this strain was 18 times lower in comparison to the control glass sample.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Adhesión Celular/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Siloxanos/química , Siloxanos/farmacología , Antiinfecciosos/síntesis química , Siloxanos/síntesis química
11.
Molecules ; 26(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833958

RESUMEN

This study focuses on the synthesis of hybrid luminescent polysiloxanes and silicone rubbers grafted by organometallic rhenium(I) complexes using Cu(I)-catalyzed azido-alkyne cycloaddition (CuAAC). The design of the rhenium(I) complexes includes using a diimine ligand to create an MLCT luminescent center and the introduction of a triple C≡C bond on the periphery of the ligand environment to provide click-reaction capability. Poly(3-azidopropylmethylsiloxane-co-dimethylsiloxane) (N3-PDMS) was synthesized for incorporation of azide function in polysiloxane chain. [Re(CO)3(MeCN)(5-(4-ethynylphenyl)-2,2'-bipyridine)]OTf (Re1) luminescent complex was used to prepare a luminescent copolymer with N3-PDMS (Re1-PDMS), while [Re(CO)3Cl(5,5'-diethynyl-2,2'-bipyridine)] (Re2) was used as a luminescent cross-linking agent of N3-PDMS to obtain luminescent silicone rubber (Re2-PDMS). The examination of photophysical properties of the hybrid polymer materials obtained show that emission profile of Re(I) moiety remains unchanged and metallocenter allows to control the creation of polysiloxane-based materials with specified properties.

12.
Macromol Rapid Commun ; 40(16): e1900205, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31206943

RESUMEN

The lack of soft high-dielectric-permittivity elastomers responsive to a low voltage has been a long-standing obstacle for the industrialization of dielectric elastomer actuators (DEA) technology. Here, elastomers that not only possess a high dielectric permittivity of 18 and good elastic and insulating properties but are also processable in very thin films by conventional techniques are reported. Additionally, the elastic modulus can be easily tuned. A soft elastomer with a storage modulus of E = 350 kPa, a tanδ = 0.007 at 0.05 Hz, and a lateral actuation strain of 13% at 13 V µm-1 is prepared. A stable lateral actuation over 50 000 cycles at 10 Hz is demonstrated. A stiffer elastomer with an E = 790 kPa, a tanδ = 0.0018 at 0.05 Hz, a large out-of-plane actuation at 41 V µm-1 , and breakdown fields of almost 100 V µm-1 is also developed. Such breakdown fields are the highest ever reported for a high-permittivity elastomer. Additionally, actuators operable at a voltage as low as 200 V are also demonstrated. Because the materials used are cheap and easily available, and the chemical reactions leading to them allow upscaling, they have the potential to advance the DEA technology.


Asunto(s)
Elastómeros/química , Técnicas Electroquímicas
13.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022884

RESUMEN

Antibiofilm strategies may be based on the prevention of initial bacterial adhesion, the inhibition of biofilm maturation or biofilm eradication. N-acetyl-L-cysteine (NAC), widely used in medical treatments, offers an interesting approach to biofilm destruction. However, many Eubacteria strains are able to enzymatically decompose the NAC molecule. This is the first report on the action of two hybrid materials, NAC-Si-1 and NAC-Si-2, against bacteria isolated from a water environment: Agrobacterium tumefaciens, Aeromonas hydrophila, Citrobacter freundii, Enterobacter soli, Janthinobacterium lividum and Stenotrophomonas maltophilia. The NAC was grafted onto functional siloxane polymers to reduce its availability to bacterial enzymes. The results confirm the bioactivity of NAC. However, the final effect of its action was environment- and strain-dependent. Moreover, all the tested bacterial strains showed the ability to degrade NAC by various metabolic routes. The NAC polymers were less effective bacterial inhibitors than NAC, but more effective at eradicating mature bacterial biofilms.


Asunto(s)
Acetilcisteína/farmacología , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Agua Potable/microbiología , Siloxanos/farmacología , Acetilcisteína/química , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Siloxanos/química , Purificación del Agua
14.
Regul Toxicol Pharmacol ; 98: 209-214, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30056248

RESUMEN

In the context of a larger testing programme that aimed at assessing the skin sensitisation potential of functional polysiloxanes and silanes, this investigation complements the available in vitro and in vivo data with data in the SENS-IS assay, a human in vitro 3D skin-based model. The SENS-IS assay allowed testing of all functional polysiloxanes and silanes without any solubility issues or limitations related to the multiconstituent nature of the commercial grade test substances. It appeared to encompass skin metabolism, a factor which we considered important for the skin sensitisation hazard assessment particularly of aminofunctionalised siloxanes and silanes. These three technical aspects posed significant challenges in the first part of the in vitro programme with the OECD-validated in vitro assays. The SENS-IS assay delivered promising results for this group of substances. On its own, it was the best performing model, as it did not pose any technical issues with the assay and it matched all in vivo outcomes. Considering its performance and avoidance of any limitations due to lack of solubility or chemical composition aspects, we concluded that the SENS-IS assay to be a suitable starting point for an integrated testing strategy for skin sensitisation for the group of functional polysiloxanes and silanes.


Asunto(s)
Alérgenos/toxicidad , Bioensayo , Haptenos/toxicidad , Irritantes/toxicidad , Silanos/toxicidad , Siloxanos/toxicidad , Dermatitis Alérgica por Contacto , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo
15.
Macromol Rapid Commun ; 38(4)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28052443

RESUMEN

Chemical composition and shape determine the basic properties of any object. Commonly, chemical synthesis and shaping follow each other in a sequence, although their combination into a single process would be an elegant simplification. Here, a pathway of simultaneous synthesis and shaping as applied to polysiloxanes on the micro- and nanoscale is presented. Complex structures such as stars, chalices, helices, volcanoes, rods, or combinations thereof are obtained. Varying the shape-controlling reaction parameters including temperature, water saturation, and the type of substrate allows to direct the reaction toward specific structures. A general mechanism of growth is suggested and analytical evidence and thermodynamic calculations to support it are provided. An aqueous droplet in either gaseous atmosphere or in a liquid organic solvent serves as a spatially confined polymerization volume. By substituting the starting materials, germanium-based nanostructures are also obtained. This transferability marks this approach as a major step toward a generally applicable method of chemical synthesis including in situ shaping.


Asunto(s)
Microquímica/métodos , Nanoestructuras/química , Siloxanos/síntesis química , Tamaño de la Partícula , Siloxanos/química , Propiedades de Superficie
16.
Regul Toxicol Pharmacol ; 84: 64-76, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28017767

RESUMEN

The skin sensitization potential of chemicals has traditionally been evaluated in vivo according to OECD testing guidelines in guinea pigs or the mouse local lymph node assay. There has lately been a great emphasis on establishing in vitro test methods reflecting the key biological events in the adverse outcome pathway (AOP) for skin sensitization as published by the OECD. Against this background, a group of 8 polysiloxanes and silanes, seven of them aminofunctionalised, for which in vivo data were already available, has been tested in vitro in the direct peptide reactivity assay (DPRA), the KeratinoSens™ and the human cell line activation test (h-CLAT) and in the modified myeloid U937 skin sensitization test (mMUSST) as far as technically feasible. The main objective of the programme was to determine the utility of these systems for this heterogeneous group of silicone-based substances, recognizing that some substances are outside the assays applicability domains. The presented data provided some interesting mechanistical insights into the performance of these assays for functionalised siloxanes and silanes. The data also allow for a preliminary evaluation of proposed integrated testing strategies (ITS) to determine the skin sensitization potential of chemicals which were not considered in the training sets of the respective ITS.


Asunto(s)
Bioensayo , Células Dendríticas/efectos de los fármacos , Dermatitis Alérgica por Contacto/etiología , Irritantes/toxicidad , Queratinocitos/efectos de los fármacos , Silanos/toxicidad , Siloxanos/toxicidad , Pruebas de Irritación de la Piel/métodos , Alternativas a las Pruebas en Animales , Animales , Células Dendríticas/inmunología , Dermatitis Alérgica por Contacto/genética , Dermatitis Alérgica por Contacto/inmunología , Dermatitis Alérgica por Contacto/metabolismo , Estudios de Factibilidad , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Cobayas , Humanos , Queratinocitos/metabolismo , Ensayo del Nódulo Linfático Local , Ratones Endogámicos CBA , Medición de Riesgo , Células U937
17.
Macromol Rapid Commun ; 37(24): 2030-2036, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27778416

RESUMEN

Nonspecific adsorption of proteins is a challenging problem for the development of biocompatible materials, as well as for antifouling and fouling-release coatings, for instance for the marine industry. The concept of preparing amphiphilic systems based on low surface energy hydrophobic materials via their hydrophilic modification is being widely pursued. This work describes a novel two-step route for the preparation of interpenetrating polymer networks of otherwise incompatible poly(dimethylsiloxane) and zwitterionic polymers. Changes in surface hydrophilicity as well as surface charge at different pH values are investigated. Characterization using atomic force microscopy provides thorough insight into surface changes upon hydrophilic modification. Protein fouling of the materials is assessed using fibrinogen as a model protein.


Asunto(s)
Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/síntesis química , Membranas Artificiales , Interacciones Hidrofóbicas e Hidrofílicas
18.
Macromol Rapid Commun ; 37(2): 136-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26524219

RESUMEN

In this Communication, novel water-soluble hyperbranched polysiloxanes (WHPSs) simultaneously containing hydroxyl and primary amine groups are developed. The polymers are constructed via melt polycondensation, that is, transesterification reaction between ethoxyl groups of (3-aminopropyl)triethoxysilane and hydroxyl groups of dihydric alcohols, using a one-step process under catalyst-free conditions. Surprisingly, the resultant WHPSs can emit bright blue fluorescence in the 100% solid state under the irradiation of UV light, and their photoluminescence intensities in aqueous solutions continuously go up along with increasing concentrations. Interestingly, their hydrolyzates display more intense luminescence compared to the unhydrolyzed. The efficient and easily controllable preparation strategy provides a remarkable and versatile platform for the fabrication of neoteric fluorescent materials for various potential applications.


Asunto(s)
Colorantes Fluorescentes/química , Siloxanos/química , Agua/química , Aminas/química , Catálisis , Fluorescencia , Colorantes Fluorescentes/síntesis química , Hidrólisis , Radical Hidroxilo/química , Siloxanos/síntesis química , Soluciones , Espectrometría de Fluorescencia , Termodinámica , Rayos Ultravioleta
19.
Molecules ; 20(5): 9358-79, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26007188

RESUMEN

Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.


Asunto(s)
Candida/enzimología , Esterificación/fisiología , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Polimerizacion , Polímeros/química , Ácidos Cafeicos/química , Candida/metabolismo , Catálisis , Proteínas Fúngicas/ultraestructura , Lipasa/ultraestructura , Polienos/química , Polietilenglicoles/química , Poliestirenos/química , Siloxanos/química , Compuestos de Sulfhidrilo/química , Compuestos de Vinilo/química
20.
Beilstein J Org Chem ; 11: 2261-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26664650

RESUMEN

The polymerization of octamethylcyclotetrasiloxane (D4) is investigated using several five-, six- and seven-membered N-heterocyclic carbenes (NHCs). The catalysts are delivered in situ from thermally susceptible CO2 adducts. It is demonstrated that the polymerization can be triggered from a latent state by mild heating, using the highly nucleophilic 1,3,4,5-tetramethylimidazol-2-ylidene as organocatalyst. This way, high molecular weight PDMS is prepared (up to >400 000 g/mol, 1.6 < Ð M < 2.5) in yields >95%, using low catalyst loadings (0.2-0.1 mol %). Furthermore, the results suggest that a nucleophilic, zwitterionic mechanism is in operation, in preference to purely anionic polymerization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA