RESUMEN
Automated milk feeders (AMF) allow farmers to raise calves in groups while generating individual records on milk consumption, drinking speed, and frequency of visits. Calves raised in groups benefit from social interaction, which facilitates learning and adapting to novelty. However, calves in large groups (>12 calves/feeder) experience a higher risk of disease transmission and competition than those housed individually or in smaller groups. Therefore, if group size, grouping strategy, and disease detection are not optimal, the health and performance of calves can be compromised. The objectives of this narrative literature review, from publications available as of February 2023, are to (1) describe the use of AMF in group housing systems for calves and the associated feeding behavior variables they automatically collect, (2) linking feeding behavior collected from AMF to disease risk in calves, (3) describe research on social behavior in AMF systems, and (4) introduce social networks as a promising tool for the study of social behavior and disease transmission in group-housed AMF-fed calves. Existing research suggests that feeding behavior measures from AMF can assist in detecting bovine respiratory disease and enteric disease, which are common causes of morbidity and mortality for preweaning dairy heifers. Automated milk feeder records show reduced milk intake, drinking speed, or frequency of visits when calves are sick. However, discrepancies exist among published research about the sensitivity of feeding behavior measures as indicators of sickness, likely due to differences in feeding plans and disease-detection protocols. Therefore, considering the influence of milk allowance, group density, and individual variation on the analysis of AMF data is essential to derive meaningful information used to inform management decisions. Research using dynamic social networks derived from precision data show potential for the use of social network analysis to understand disease transmission and the effect of disease on social behavior of group-housed calves.
Asunto(s)
Conducta Alimentaria , Leche , Animales , Bovinos , Femenino , Vivienda para Animales , Industria Lechera/métodos , Conducta SocialRESUMEN
Liquefied sake lees, a by-product of Japanese sake, is rich in Saccharomyces cerevisiae, proteins, and prebiotics derived from rice and yeast. Previous studies have reported that Saccharomyces cerevisiae fermentation products improved the health, growth, and faecal characteristics of preweaning calves. This study investigated the effects of adding liquefied sake lees to milk replacer on the growth performance, faecal characteristics, and blood metabolites of preweaning Japanese Black calves from 6 to 90 days of age. Twenty-four Japanese Black calves at 6 days of age were randomly assigned to one of three treatments: No liquefied sake lees (C, n = 8), 100 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (LS, n = 8), and 200 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (HS, n = 8). The intake of milk replacer and calf starter, as well as, the average daily gain did not differ between the treatments. The number of days counted with faecal score 1 in LS was higher than in HS (P < 0.05), while the number of days with diarrhoea medication in LS and C was lower than HS (P < 0.05). The faecal n-butyric acid concentration tended to be higher in LS compared to C (P = 0.060). The alpha diversity index (Chao1) was higher in HS than in C and LS at 90 days of age (P < 0.05). The principal coordinate analysis (PCoA) using weighted UniFrac distance showed that the bacterial community structures in faeces among the treatments at 90 days of age were significantly different (P < 0.05). The plasma ß-hydroxybutyric acid concentration, an indicator of rumen development, was higher for LS than in C throughout the experiment (P < 0.05). These results suggested that adding liquefied sake lees up to 100 g/d (on a fresh matter basis) might promote rumen development in preweaning Japanese Black calves.