Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
IEEE Trans Control Syst Technol ; 28(6): 2600-2607, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33762804

RESUMEN

While artificial pancreas (AP) systems are expected to improve the quality of life among people with type 1 diabetes mellitus (T1DM), the design of convenient systems that optimize the user experience, especially for those with active lifestyles, such as children and adolescents, still remains an open research question. In this work, we introduce an embeddable design and implementation of model predictive control (MPC) of AP systems for people with T1DM that significantly reduces the weight and on-body footprint of the AP system. The embeddable controller is based on a zone MPC that has been evaluated in multiple clinical studies. The proposed embedded zone MPC features a simpler design of the periodic safe zone in the cost function and the utilization of state-of-the-art alternating minimization algorithms for solving the convex programming problems inherent to MPC with linear models subject to convex constraints. Off-line closed-loop data generated by the FDA-accepted UVA/Padova simulator is used to select an optimization algorithm and corresponding tuning parameters. Through hardware-in-the-loop in silico results on a limited-resource Arduino Zero (Feather M0) platform, we demonstrate the potential of the proposed embedded MPC. In spite of resource limitations, our embedded zone MPC manages to achieve comparable performance of that of the full-version zone MPC implemented in a 64-bit desktop for scenarios with/without meal-disturbance compensations. Metrics for performance comparison included median percent time in the euglycemic ([70, 180] mg/dL range) of 84.3% vs. 83.1% for announced meals, with an equivalence test yielding p = 0.0013 and 66.2% vs. 66.0% for unannounced meals with p = 0.0028.

2.
Automatica (Oxf) ; 91: 105-117, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30034017

RESUMEN

A novel Model Predictive Control (MPC) law for the closed-loop operation of an Artificial Pancreas (AP) to treat type 1 diabetes is proposed. The contribution of this paper is to simultaneously enhance both the safety and performance of an AP, by reducing the incidence of controller-induced hypoglycemia, and by promoting assertive hyperglycemia correction. This is achieved by integrating two MPC features separately introduced by the authors previously to independently improve the control performance with respect to these two coupled issues. Velocity-weighting MPC reduces the occurrence of controller-induced hypoglycemia. Velocity-penalty MPC yields more effective hyperglycemia correction. Benefits of the proposed MPC law over the MPC strategy deployed in the authors' previous clinical trial campaign are demonstrated via a comprehensive in-silico analysis. The proposed MPC law was deployed in four distinct US Food & Drug Administration approved clinical trial campaigns, the most extensive of which involved 29 subjects each spending three months in closed-loop. The paper includes implementation details, an explanation of the state-dependent cost functions required for velocity-weighting and penalties, a discussion of the resulting nonlinear optimization problem, a description of the four clinical trial campaigns, and control-related trial highlights.

3.
Automatica (Oxf) ; 71: 237-246, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27695131

RESUMEN

A novel Model Predictive Control (MPC) law for an Artificial Pancreas (AP) to automatically deliver insulin to people with type 1 diabetes is proposed. The MPC law is an enhancement of the authors' zone-MPC approach that has successfully been trialled in-clinic, and targets the safe outpatient deployment of an AP. The MPC law controls blood-glucose levels to a diurnally time-dependent zone, and enforces diurnal, hard input constraints. The main algorithmic novelty is the use of asymmetric input costs in the MPC problem's objective function. This improves safety by facilitating the independent design of the controller's responses to hyperglycemia and hypoglycemia. The proposed controller performs predictive pump-suspension in the face of impending hypoglycemia, and subsequent predictive pump-resumption, based only on clinical needs and feedback. The proposed MPC strategy's benefits are demonstrated by in-silico studies as well as highlights from a US Food and Drug Administration approved clinical trial in which 32 subjects each completed two 25 hour closed-loop sessions employing the proposed MPC law.

4.
ISA Trans ; : 1-8, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39237395

RESUMEN

This paper investigates safety-critical event-triggered control (ETC) for nonlinear systems. It proposes a new ETC strategy that ensures event-triggered safety by using a tunable input-to-state safe barrier function. Then, a method is devised to effectively save communication resources and reduce computational load through the construction of a suitable dynamic event-triggered mechanism. Furthermore, the exclusion of Zeno behavior is guaranteed for the closed-loop system. Finally, this paper culminates by presenting two illustrative examples that showcase the effectiveness of proposed control strategies.

5.
IEEE Control Syst Lett ; 5(5): 1537-1542, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37974600

RESUMEN

We introduce a methodology to guarantee safety against the spread of infectious diseases by viewing epidemiological models as control systems and human interventions (such as quarantining or social distancing) as control input. We consider a generalized compartmental model that represents the form of the most popular epidemiological models and we design safety-critical controllers that formally guarantee safe evolution with respect to keeping certain populations of interest under prescribed safe limits. Furthermore, we discuss how measurement delays originated from incubation period and testing delays affect safety and how delays can be compensated via predictor feedback. We demonstrate our results by synthesizing active intervention policies that bound the number of infections, hospitalizations and deaths for epidemiological models capturing the spread of COVID-19 in the USA.

6.
IEEE Access ; 8: 188454-188474, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34812361

RESUMEN

The world has recently undergone the most ambitious mitigation effort in a century, consisting of wide-spread quarantines aimed at preventing the spread of COVID-19. The use of influential epidemiological models of COVID-19 helped to encourage decision makers to take drastic non-pharmaceutical interventions. Yet, inherent in these models are often assumptions that the active interventions are static, e.g., that social distancing is enforced until infections are minimized, which can lead to inaccurate predictions that are ever evolving as new data is assimilated. We present a methodology to dynamically guide the active intervention by shifting the focus from viewing epidemiological models as systems that evolve in autonomous fashion to control systems with an "input" that can be varied in time in order to change the evolution of the system. We show that a safety-critical control approach to COVID-19 mitigation gives active intervention policies that formally guarantee the safe evolution of compartmental epidemiological models. This perspective is applied to current US data on cases while taking into account reduction of mobility, and we find that it accurately describes the current trends when time delays associated with incubation and testing are incorporated. Optimal active intervention policies are synthesized to determine future mitigations necessary to bound infections, hospitalizations, and death, both at national and state levels. We therefore provide means in which to model and modulate active interventions with a view toward the phased reopenings that are currently beginning across the US and the world in a decentralized fashion. This framework can be converted into public policies, accounting for the fractured landscape of COVID-19 mitigation in a safety-critical fashion.

7.
Bioeng Transl Med ; 4(1): 61-74, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680319

RESUMEN

The long-term use of the artificial pancreas (AP) requires an automated insulin delivery algorithm that can learn and adapt with the growth, development, and lifestyle changes of patients. In this work, we introduce a data-driven AP adaptation method for improved glucose management in a home environment. A two-phase Bayesian optimization assisted parameter learning algorithm is proposed to adapt basal and carbohydrate-ratio profile, and key feedback control parameters. The method is evaluated on the basis of the 111-adult cohort of the FDA-accepted UVA/Padova type 1 diabetes mellitus simulator through three scenarios with lifestyle disturbances and incorrect initial parameters. For all the scenarios, the proposed method is able to robustly adapt AP parameters for improved glycemic regulation performance in terms of percent time in the euglycemic range [70, 180] mg/dl without causing risk of hypoglycemia in terms of percent time below 70 mg/dl.

8.
Proc IFAC World Congress ; 48(23): 154-159, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-30225467

RESUMEN

The design of a Model Predictive Control (MPC) law for an Artificial Pancreas (AP) that automatically delivers insulin to people with type 1 diabetes mellitus is considered. An MPC law was recently proposed that exploits the simplicity of linear dynamical models, but is in two ways a 'nonlinear' departure of standard linear MPC, while circumnavigating the complexity of cumbersome, fully nonlinear MPC approaches. The first of two issues focused on is the nonlinearity of the control problem, and it is demonstrated how this can be tackled via asymmetric objective functions. The second issue is controller induced hypoglycemia resulting from the large delay in actuation and sensing. The proposed MPC strategy employs an asymmetric, state-dependent objective function that leads to a nonlinear optimization problem. The result is an AP controller with significantly elevated safety and comparable control performance. The contribution of this paper is a detailed in-silico analysis of the proposed control law, and a clinical demonstration of the benefits of asymmetric objective functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA