Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37445117

RESUMEN

Discharged slag not only occupies a large amount of land for disposal, but also causes serious environmental pollution. The use of alkali-activated slag (AAS) instead of cement as a soil-stabilization agent is beneficial for industrial waste disposal and energy conservation, which complies with the concept of green and low-carbon sustainable development in the construction industry. In this study, the compressive strength, water permeability coefficient, chloride migration coefficient and sulfate resistance of alkali-activated slag-stabilized soil (AASS) were evaluated, and compared with those of cement-stabilized soil (CSS). The hydrated crystalline phases and microscopic pore structures were analyzed by X-ray diffraction, electrochemical impedance spectroscopy (EIS) and mercury intrusion porosimetry (MIP) tests, respectively. The results indicate that, compared with CSS, AASS exhibits a higher compressive strength, lower water permeability, chloride migration coefficient and better resistance to sulfate attack, with the optimum dosage higher than 10 wt.%. The results of the MIP analysis show that the addition of AAS reduces the porosity by 6.47%. The combined use of soil and AAS proves to be a viable and sustainable method of waste utilization and carbon emission reduction in the construction industry, which provides a practical path towards carbon peaking and carbon neutrality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA