Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Neurophysiol Pract ; 7: 146-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734582

RESUMEN

Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.

2.
Front Hum Neurosci ; 13: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804771

RESUMEN

Fibromyalgia syndrome (FMS) is a complex disorder where widespread musculoskeletal pain is associated with many heterogenous symptoms ranging from affective disturbances to cognitive dysfunction and central fatigue. FMS is currently underdiagnosed and often very poorly responsive to pharmacological treatment. Pathophysiology of the disease remains still obscure even if in the last years fine structural and functional cerebral abnormalities have been identified, principally by neurophysiological and imaging studies delineating disfunctions in pain perception, processing and control systems. On such basis, recently, neurostimulation of brain areas involved in mechanism of pain processing and control (primary motor cortex: M1 and dorsolateral prefrontal cortex: DLPFC) has been explored by means of different approaches and particularly through non-invasive brain stimulation techniques (transcranial magnetic and electric stimulation: TMS and tES). Here we summarize studies on tES application in FMS. The great majority of reports, based on direct currents (transcranial direct currents stimulation: tDCS) and targeting M1, showed efficacy on pain measures and less on cognitive and affective symptoms, even if several aspects as maintenance of therapeutical effects and optimal stimulation parameters remain to be established. Differently, stimulation of DLPFC, explored in a few studies, was ineffective on pain and showed limited effects on cognitive and affective symptoms. Very recently new tES techniques as high-density tDCS (HD-tDCS), transcranial random noise stimulation (tRNS) and tDCS devices for home-based treatment have been explored in FMS with interesting even if very preliminary results opening interesting perspectives for more effective, well tolerated, cheap and easy therapeutic approaches.

3.
Neuroimage Clin ; 8: 1-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110109

RESUMEN

Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.


Asunto(s)
Encéfalo/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Electroencefalografía/métodos , Conducta Alimentaria/fisiología , Trastornos de Alimentación y de la Ingestión de Alimentos , Neurorretroalimentación/métodos , Neuroimagen/métodos , Obesidad , Estimulación Magnética Transcraneal/métodos , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Trastornos de Alimentación y de la Ingestión de Alimentos/prevención & control , Trastornos de Alimentación y de la Ingestión de Alimentos/terapia , Humanos , Obesidad/fisiopatología , Obesidad/prevención & control , Obesidad/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA