RESUMEN
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Asunto(s)
Microbiota , Factores Sociales , Simbiosis , Animales , Humanos , Enfermedades no Transmisibles , VirulenciaRESUMEN
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
RESUMEN
Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.
RESUMEN
H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.
Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Pollos , Hurones , Subtipo H3N2 del Virus de la Influenza A , Aerosoles y Gotitas RespiratoriasRESUMEN
Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Ratones , Humanos , Animales , Islas de CpG , Patrón de Herencia , Mamíferos/genéticaRESUMEN
An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.
Asunto(s)
COVID-19/epidemiología , COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Niño , Preescolar , Trazado de Contacto/métodos , Brotes de Enfermedades , Femenino , Genoma Viral , Humanos , Lactante , Recién Nacido , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , SARS-CoV-2/clasificación , Vacunación , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Femenino , Humanos , Lactante , Embarazo , Microbioma Gastrointestinal/genética , Microbiota/genética , Madres , Lactancia Materna , Heces , Secuencias Repetitivas EsparcidasRESUMEN
G-protein-coupled receptors (GPCRs) represent a ubiquitous membrane protein family and are important drug targets. Their diverse signaling pathways are driven by complex pharmacology arising from a conformational ensemble rarely captured by structural methods. Here, fluorine nuclear magnetic resonance spectroscopy (19F NMR) is used to delineate key functional states of the adenosine A2A receptor (A2AR) complexed with heterotrimeric G protein (Gαsß1γ2) in a phospholipid membrane milieu. Analysis of A2AR spectra as a function of ligand, G protein, and nucleotide identifies an ensemble represented by inactive states, a G-protein-bound activation intermediate, and distinct nucleotide-free states associated with either partial- or full-agonist-driven activation. The Gßγ subunit is found to be critical in facilitating ligand-dependent allosteric transmission, as shown by 19F NMR, biochemical, and computational studies. The results provide a mechanistic basis for understanding basal signaling, efficacy, precoupling, and allostery in GPCRs.
Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/química , Receptor de Adenosina A2A/química , Regulación Alostérica , Sitios de Unión , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Cinética , Ligandos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Nanoestructuras/química , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de SeñalRESUMEN
The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.
Asunto(s)
Flagelos/fisiología , Flagelos/ultraestructura , Salmonella typhimurium/fisiología , Microscopía por Crioelectrón , Conformación Proteica , TorqueRESUMEN
Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.
Asunto(s)
Crecimiento y Desarrollo , Mosaicismo , Espermatozoides/metabolismo , Adolescente , Envejecimiento/sangre , Alelos , Células Clonales , Estudios de Cohortes , Humanos , Masculino , Modelos Biológicos , Mutación/genética , Factores de Riesgo , Factores de Tiempo , Adulto JovenRESUMEN
The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.
Asunto(s)
Prueba de COVID-19 , COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidad , COVID-19/transmisión , Femenino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiologíaRESUMEN
RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.
Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Encéfalo/metabolismo , Neurogénesis , Neuronas/metabolismo , Proteínas Nogo/metabolismo , Receptores Nogo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipoquinas/metabolismo , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/metabolismo , Complemento C1q/metabolismo , Dendritas/metabolismo , Glicosilación , Células HEK293 , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ligandos , Ratones Endogámicos C57BL , Red Nerviosa/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Dominios Proteicos , Eliminación de Secuencia , Sinapsis/metabolismo , Transmisión Sináptica/fisiologíaRESUMEN
The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.
Asunto(s)
COVID-19/epidemiología , Evolución Molecular , Mutación , Pandemias , SARS-CoV-2/genética , Secuencia de Aminoácidos/genética , COVID-19/inmunología , COVID-19/transmisión , COVID-19/virología , Codón/genética , Genes Virales , Flujo Genético , Adaptación al Huésped/genética , Humanos , Evasión Inmune , Filogenia , Salud PúblicaRESUMEN
At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.
Asunto(s)
Sistema Digestivo/inmunología , Linfocitos T Reguladores/inmunología , Animales , Susceptibilidad a Enfermedades/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Homeostasis/inmunología , Inmunoglobulina A/inmunología , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos NOD , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunologíaRESUMEN
Infants born by vaginal delivery are colonized with maternal fecal microbes. Cesarean section (CS) birth disturbs mother-to-neonate transmission. In this study (NCT03568734), we evaluated whether disturbed intestinal microbiota development could be restored in term CS-born infants by postnatal, orally delivered fecal microbiota transplantation (FMT). We recruited 17 mothers, of whom seven were selected after careful screening. Their infants received a diluted fecal sample from their own mothers, taken 3 weeks prior to delivery. All seven infants had an uneventful clinical course during the 3-month follow-up and showed no adverse effects. The temporal development of the fecal microbiota composition of FMT-treated CS-born infants no longer resembled that of untreated CS-born infants but showed significant similarity to that of vaginally born infants. This proof-of-concept study demonstrates that the intestinal microbiota of CS-born infants can be restored postnatally by maternal FMT. However, this should only be done after careful clinical and microbiological screening.
Asunto(s)
Trasplante de Microbiota Fecal/métodos , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Adulto , Cesárea/efectos adversos , Parto Obstétrico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microbiota/fisiología , Madres , Embarazo , Prueba de Estudio Conceptual , Vagina/microbiologíaRESUMEN
Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health.
Asunto(s)
Vesículas Extracelulares , Virus , Vesículas Extracelulares/metabolismo , Virus/genéticaRESUMEN
Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.
Asunto(s)
Heparitina Sulfato/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Glicopéptidos/análisis , Heparitina Sulfato/química , Humanos , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Alineación de SecuenciaRESUMEN
Dopamine controls essential brain functions through volume transmission. Different from fast synaptic transmission, where neurotransmitter release and receptor activation are tightly coupled by an active zone, dopamine transmission is widespread and may not necessitate these organized release sites. Here, we determine whether striatal dopamine secretion employs specialized machinery for release. Using super resolution microscopy, we identified co-clustering of the active zone scaffolding proteins bassoon, RIM and ELKS in â¼30% of dopamine varicosities. Conditional RIM knockout disrupted this scaffold and, unexpectedly, abolished dopamine release, while ELKS knockout had no effect. Optogenetic experiments revealed that dopamine release was fast and had a high release probability, indicating the presence of protein scaffolds for coupling Ca2+ influx to vesicle fusion. Hence, dopamine secretion is mediated by sparse, mechanistically specialized active zone-like release sites. This architecture supports spatially and temporally precise coding for dopamine and provides molecular machinery for regulation.
Asunto(s)
Axones/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Transmisión Sináptica/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cuerpo Estriado/citología , Dopamina/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rabRESUMEN
The composite members of the microbiota face a range of selective pressures and must adapt to persist in the host. We highlight recent work characterizing the evolution and transfer of genetic information across nested scales of host-associated microbiota, which enable resilience to biotic and abiotic perturbations. At the strain level, we consider the preservation and diversification of adaptive information in progeny lineages. At the community level, we consider genetic exchange between distinct microbes in the ecosystem. Finally, we frame microbiomes as open systems subject to acquisition of novel information from foreign ecosystems through invasion by outsider microbes.
Asunto(s)
Evolución Molecular , Variación Genética , Metagenoma/genética , Microbiota/genética , Animales , Ecosistema , Transferencia de Gen Horizontal , Especificidad del Huésped , HumanosRESUMEN
Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.