Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1977): 20220038, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35765839

RESUMEN

Frost and freezing temperatures have posed an obstacle to tropical woody evergreen plants over evolutionary time scales. Thus, along tropical elevation gradients, frost may influence woody plant community structure by filtering out lowland tropical clades and allowing extra-tropical lineages to establish at higher elevations. Here we assess the extent to which frost and freezing temperatures influence the taxonomic and phylogenetic structure of naturally patchy evergreen forests (locally known as shola) along a mid-upper montane elevation gradient in the Western Ghats, India. Specifically, we examine the role of large-scale macroclimate and factors affecting local microclimates, including shola patch size and distance from shola edge, in driving shola metacommunity structure. We find that the shola metacommunity shows phylogenetic overdispersion with elevation, with greater representation of extra-tropical lineages above 2000 m, and marked turnover in taxonomic composition of shola woody communities near the frost-affected forest edge above 2000 m, from those below 2000 m. Both minimum winter temperature and patch size were equally important in determining metacommunity structure, with plots inside very large sholas dominated by older tropical lineages, with many endemics. Phylogenetic overdispersion in the upper montane shola metacommunity thus resulted from tropical lineages persisting in the interiors of large closed frost-free sholas, where their regeneration niche has been preserved over time.


Asunto(s)
Evolución Biológica , Bosques , Frío , Fiebre , Filogenia , Madera
2.
Ecology ; 98(7): 1896-1907, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28419436

RESUMEN

Functional gene approaches have been used to better understand the roles of microbes in driving forest soil nitrogen (N) cycling rates and bioavailability. Ammonia oxidation is a rate limiting step in nitrification, and is a key area for understanding environmental constraints on N availability in forests. We studied how increasing temperature affects the role of ammonia oxidizing archaea (AOA) and bacteria (AOB) in soil N cycling and availability by using a highly constrained natural mean annual temperature (MAT) elevation gradient in a tropical montane wet forest. We found that net nitrate (NO3- ) bioavailability is positively related to MAT (r2  = 0.79, P = 0.0033), and AOA DNA abundance is positively related to both NO3- availability (r2  = 0.34, P = 0.0071) and MAT (r2  = 0.34, P < 0.001). In contrast, AOB DNA was only detected in some soils across the gradient. We identified three distinct phylotypes within the AOA which differed from one another in abundance and relative gene expression. In addition, one AOA phylotype increased in abundance with MAT, while others did not. We conclude that MAT is the primary driver of ecosystem N availability across this gradient, and AOA population size and structure appear to mediate the relationship between the nitrification and N bioavailability. These findings hold important implications for nutrient limitation in forests and feedbacks to primary production under changing climate.


Asunto(s)
Amoníaco/metabolismo , Ecosistema , Ciclo del Nitrógeno , Microbiología del Suelo , Temperatura , Archaea , Nitrificación , Nitrógeno , Oxidación-Reducción , Suelo , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA