Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 127-156, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29237129

RESUMEN

T cells possess an array of functional capabilities important for host defense against pathogens and tumors. T cell effector functions require the T cell antigen receptor (TCR). The TCR has no intrinsic enzymatic activity, and thus signal transduction from the receptor relies on additional signaling molecules. One such molecule is the cytoplasmic tyrosine kinase ZAP-70, which associates with the TCR complex and is required for initiating the canonical biochemical signal pathways downstream of the TCR. In this article, we describe recent structure-based insights into the regulation and substrate specificity of ZAP-70, and then we review novel methods for determining the role of ZAP-70 catalytic activity-dependent and -independent signals in developing and mature T cells. Lastly, we discuss the disease states in mouse models and humans, which range from immunodeficiency to autoimmunity, that are caused by mutations in ZAP-70.


Asunto(s)
Susceptibilidad a Enfermedades , Transducción de Señal , Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Animales , Autoinmunidad , Biomarcadores , Catálisis , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación de la Expresión Génica , Humanos , Inmunidad , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Fosforilación , Transporte de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato , Linfocitos T/inmunología , Proteína Tirosina Quinasa ZAP-70/antagonistas & inhibidores , Proteína Tirosina Quinasa ZAP-70/química , Proteína Tirosina Quinasa ZAP-70/genética
2.
Genes Dev ; 37(15-16): 743-759, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669874

RESUMEN

Protein tyrosine phosphatases (PTPs) are critical regulators of signal transduction but have yet to be exploited fully for drug development. Receptor protein tyrosine phosphatase δ (RPTPδ/PTPRD) has been shown to elicit tumor-promoting functions, including elevating SRC activity and promoting metastasis in certain cell contexts. Dimerization has been implicated in the inhibition of receptor protein tyrosine phosphatases (RPTPs). We have generated antibodies targeting PTPRD ectodomains with the goal of manipulating their dimerization status ectopically, thereby regulating intracellular signaling. We have validated antibody binding to endogenous PTPRD in a metastatic breast cancer cell line, CAL51, and demonstrated that a monoclonal antibody, RD-43, inhibited phosphatase activity and induced the degradation of PTPRD. Similar effects were observed following chemically induced dimerization of its phosphatase domain. Mechanistically, RD-43 triggered the formation of PTPRD dimers in which the phosphatase activity was impaired. Subsequently, the mAb-PTPRD dimer complex was degraded through lysosomal and proteasomal pathways, independently of secretase cleavage. Consequently, treatment with RD-43 inhibited SRC signaling and suppressed PTPRD-dependent cell invasion. Together, these findings demonstrate that manipulating RPTP function via antibodies to the extracellular segments has therapeutic potential.


Asunto(s)
Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Transducción de Señal , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Dimerización , Línea Celular , Monoéster Fosfórico Hidrolasas
3.
Genes Dev ; 37(15-16): 678-680, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673461

RESUMEN

Receptor protein tyrosine phosphatases (RPTPs) are involved in a broad list of cellular, developmental, and physiological functions. Altering their expression leads to significant changes in protein phosphorylation linked to a growing list of human diseases, including cancers and neurological disorders. In this issue of Genes & Development, Qian and colleagues (pp. 743-759) present the identification of a monoclonal antibody targeting PTPRD extracellular domain-inducing dimerization and inhibition of the phosphatase activities, causing the proteolysis of dimeric PTPRD by a mechanism involving intracellular degradation pathways. Their study supports the potential of modulating PTPRD via its extracellular domains. This opens a new framework in the clinical manipulation of PTPRD and its closely related family members.


Asunto(s)
Inmunoglobulinas , Proteínas Tirosina Fosfatasas , Humanos , Dimerización , Diferenciación Celular , Proteínas Tirosina Fosfatasas/genética , Tirosina
4.
Proc Natl Acad Sci U S A ; 121(25): e2321890121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857388

RESUMEN

In bacteria, attenuation of protein-tyrosine phosphorylation occurs during oxidative stress. The main described mechanism behind this effect is the H2O2-triggered conversion of bacterial phospho-tyrosines to protein-bound 3,4-dihydroxyphenylalanine. This disrupts the bacterial tyrosine phosphorylation-based signaling network, which alters the bacterial polysaccharide biosynthesis. Herein, we report an alternative mechanism, in which oxidative stress leads to a direct inhibition of bacterial protein-tyrosine kinases (BY-kinases). We show that DefA, a minor peptide deformylase, inhibits the activity of BY-kinase PtkA when Bacillus subtilis is exposed to oxidative stress. High levels of PtkA activity are known to destabilize B. subtilis pellicle formation, which leads to higher sensitivity to oxidative stress. Interaction with DefA inhibits both PtkA autophosphorylation and phosphorylation of its substrate Ugd, which is involved in exopolysaccharide formation. Inactivation of defA drastically reduces the capacity of B. subtilis to cope with oxidative stress, but it does not affect the major oxidative stress regulons PerR, OhrR, and Spx, indicating that PtkA inhibition is the main pathway for DefA involvement in this stress response. Structural analysis identified DefA residues Asn95, Tyr150, and Glu152 as essential for interaction with PtkA. Inhibition of PtkA depends also on the presence of a C-terminal α-helix of DefA, which resembles PtkA-interacting motifs from known PtkA activators, TkmA, SalA, and MinD. Loss of either the key interacting residues or the inhibitory helix of DefA abolishes inhibition of PtkA in vitro and impairs postoxidative stress recovery in vivo, confirming the involvement of these structural features in the proposed mechanism.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Estrés Oxidativo , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Fosforilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Tirosina Quinasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Amidohidrolasas/metabolismo
5.
Mol Cell ; 70(6): 995-1007.e11, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29910111

RESUMEN

Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/fisiología , Receptor EphA4/metabolismo , Dominios Homologos src/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Comunicación Celular , Drosophila/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligandos , Proteínas Oncogénicas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Tirosina/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(1): e2212987120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574700

RESUMEN

Many receptors signal upon phosphorylation of tyrosine-based motifs in their cytosolic tail, with intrinsic disorder as a common feature. Studies on CD3ζ and CD3ε tails, which are disordered and polybasic, suggested regulation of phosphorylation through accessibility of tyrosines, governed by electrostatic interactions with membrane anionic lipids. We noticed characteristics of intrinsic disorder and previously unappreciated features in tyrosine-based motif-bearing cytosolic tails of many, especially, inhibitory receptors. They are neutral or acidic polyampholytes, with acidic and basic residues linearly segregated. To explore roles of these electrostatic features, we studied inhibitory killer-cell immunoglobulin-like receptor (KIR). Its cytosolic tail is a disordered neutrally charged polyampholyte, wherein juxtamembrane and membrane distal stretches are basic, and the intervening stretch is acidic. Despite lacking net charge, it interacted electrostatically with the plasma membrane. The juxtamembrane stretch was crucial for overall binding, which sequestered tyrosines in the lipid bilayer and restrained their constitutive phosphorylation. Human leukocyte antigen-C ligand binding to KIR released its tail from the plasma membrane to initiate signaling. Tail release occurred independently of KIR polymerization, clustering, or tyrosine phosphorylation, but required acidic residues of the acidic stretch. Tail interaction with the plasma membrane dictated signaling strength of KIR. These results revealed an electrostatic protein-lipid interaction that is unusual in being governed by segregated clusters of acidic and basic residues in polyampholytic disordered region of protein. In contrast to previously known, segregated distribution of oppositely charged residues made both binding and unbinding modules inherent to receptor tail, which could make the interaction an independent signaling switch.


Asunto(s)
Receptores KIR , Transducción de Señal , Humanos , Electricidad Estática , Membrana Celular , Fosforilación , Lípidos de la Membrana , Tirosina/química
7.
Traffic ; 24(12): 576-586, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37658794

RESUMEN

To combat microbial infections, mammalian cells use a variety of innate immune response pathways to induce synthesis of anti-microbial proteins. The cGAS/STING pathway recognizes cytoplasmic viral or cellular DNA to elicit signals that lead to type I interferon and other cytokine synthesis. cGAMP, synthesized by DNA-activated cGAS, activates the ER-associated protein, STING, which oligomerizes and translocates to other intracellular membrane compartments to trigger different branches of signaling. We have reported that, in the ER, EGFR-mediated phosphorylation of Tyr245 of STING is required for its transit to the late endosomes, where it recruits and activates the transcription factor IRF3 required for IFN induction. In the current study, we inquired whether STING Tyr245 phosphorylation per se or STING's location in the late endosomes was critical for its ability to recruit IRF3 and induce IFN. Using pharmacological inhibitors or genetic ablation of proteins that are essential for specific steps of STING trafficking, we demonstrated that the presence of STING in the late endosomal membranes, even without Tyr245 phosphorylation, was sufficient for IRF3-mediated IFN induction.


Asunto(s)
Interferones , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Inmunidad Innata/genética , ADN , Endosomas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
8.
EMBO J ; 40(3): e105001, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33349959

RESUMEN

mRNA transport in neurons requires formation of transport granules containing many protein components, and subsequent alterations in phosphorylation status can release transcripts for translation. Further, mutations in a structurally disordered domain of the transport granule protein hnRNPA2 increase its aggregation and cause hereditary proteinopathy of neurons, myocytes, and bone. We examine in vitro hnRNPA2 granule component phase separation, partitioning specificity, assembly/disassembly, and the link to neurodegeneration. Transport granule components hnRNPF and ch-TOG interact weakly with hnRNPA2 yet partition specifically into liquid phase droplets with the low complexity domain (LC) of hnRNPA2, but not FUS LC. In vitro hnRNPA2 tyrosine phosphorylation reduces hnRNPA2 phase separation, prevents partitioning of hnRNPF and ch-TOG into hnRNPA2 LC droplets, and decreases aggregation of hnRNPA2 disease variants. The expression of chimeric hnRNPA2 D290V in Caenorhabditis elegans results in stress-induced glutamatergic neurodegeneration; this neurodegeneration is rescued by loss of tdp-1, suggesting gain-of-function toxicity. The expression of Fyn, a tyrosine kinase that phosphorylates hnRNPA2, reduces neurodegeneration associated with chimeric hnRNPA2 D290V. These data suggest a model where phosphorylation alters LC interaction specificity, aggregation, and toxicity.


Asunto(s)
Caenorhabditis elegans/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Enfermedades Neurodegenerativas/genética , Tirosina/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Modelos Animales de Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Modelos Moleculares , Degeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Conformación Proteica , Dominios Proteicos
9.
Mol Cell ; 68(5): 913-925.e3, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220656

RESUMEN

The RNA polymerase II largest subunit C-terminal domain consists of repeated YSPTSPS heptapeptides. The role of tyrosine-1 (Tyr1) remains incompletely understood, as, for example, mutating all Tyr1 residues to Phe (Y1F) is lethal in vertebrates but a related mutant has only a mild phenotype in S. pombe. Here we show that Y1F substitution in budding yeast resulted in a strong slow-growth phenotype. The Y1F strain was also hypersensitive to several different cellular stresses that involve MAP kinase signaling. These phenotypes were all linked to transcriptional changes, and we also identified genetic and biochemical interactions between Tyr1 and both transcription initiation and termination factors. Further studies uncovered defects related to MAP kinase I (Slt2) pathways, and we provide evidence that Slt2 phosphorylates Tyr1 in vitro and in vivo. Our study has thus identified Slt2 as a Tyr1 kinase, and in doing so provided links between stress response activation and Tyr1 phosphorylation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Genotipo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fenotipo , Fosforilación , Dominios Proteicos , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Transducción Genética , Tirosina
10.
Genes Dev ; 31(19): 1939-1957, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29066500

RESUMEN

Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dß cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in ß-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Tirosina Fosfatasas no Receptoras/genética , Animales , Antineoplásicos/farmacología , Benzodioxoles/farmacología , Neoplasias de la Mama/enzimología , Sistemas CRISPR-Cas , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos BALB C , Fosforilación/genética , Quinazolinas/farmacología , Tasa de Supervivencia , beta Catenina/metabolismo
11.
J Biol Chem ; 299(4): 103045, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822326

RESUMEN

Glucose-stimulated insulin secretion of pancreatic ß cells is essential in maintaining glucose homeostasis. Recent evidence suggests that the Nephrin-mediated intercellular junction between ß cells is implicated in the regulation of insulin secretion. However, the underlying mechanisms are only partially characterized. Herein we report that GIV is a signaling mediator coordinating glucose-stimulated Nephrin phosphorylation and endocytosis with insulin secretion. We demonstrate that GIV is expressed in mouse islets and cultured ß cells. The loss of function study suggests that GIV is essential for the second phase of glucose-stimulated insulin secretion. Next, we demonstrate that GIV mediates the high glucose-stimulated tyrosine phosphorylation of GIV and Nephrin by recruiting Src kinase, which leads to the endocytosis of Nephrin. Subsequently, the glucose-induced GIV/Nephrin/Src signaling events trigger downstream Akt phosphorylation, which activates Rac1-mediated cytoskeleton reorganization, allowing insulin secretory granules to access the plasma membrane for the second-phase secretion. Finally, we found that GIV is downregulated in the islets isolated from diabetic mice, and rescue of GIV ameliorates the ß-cell dysfunction to restore the glucose-stimulated insulin secretion. We conclude that the GIV/Nephrin/Akt signaling axis is vital to regulate glucose-stimulated insulin secretion. This mechanism might be further targeted for therapeutic intervention of diabetic mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
J Biol Chem ; 299(7): 104847, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37211093

RESUMEN

Atypical PKCs are cell polarity kinases that operate at the plasma membrane where they function within multiple molecular complexes to contribute to the establishment and maintenance of polarity. In contrast to the classical and novel PKCs, atypical PKCs do not respond to diacylglycerol cues to bind the membrane compartment. Until recently, it was not clear how aPKCs are recruited; whether aPKCs can directly interact with membranes or whether they are dependent on other protein interactors to do so. Two recent studies identified the pseudosubstrate region and the C1 domain as direct membrane interaction modules; however, their relative importance and coupling are unknown. We combined molecular modeling and functional assays to show that the regulatory module of aPKCι, comprising the PB1 pseudosubstrate and C1 domains, forms a cooperative and spatially continuous invariant membrane interaction platform. Furthermore, we show the coordinated orientation of membrane-binding elements within the regulatory module requires a key PB1-C1 interfacial ß-strand (beta-strand linker). We show this element contains a highly conserved Tyr residue that can be phosphorylated and that negatively regulates the integrity of the regulatory module, leading to membrane release. We thus expose a hitherto unknown regulatory mechanism of aPKCι membrane binding and release during cell polarization.


Asunto(s)
Membrana Celular , Proteína Quinasa C , Procesamiento Proteico-Postraduccional , Membrana Celular/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Tirosina/metabolismo , Humanos , Células HEK293 , Unión Proteica , Mutación , Polaridad Celular/fisiología
13.
J Biol Chem ; 299(4): 104605, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36918100

RESUMEN

Pseudorabies virus (PRV) has become a "new life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2020. To identify novel anti-PRV agents, we screened a total of 107 ß-carboline derivatives and found 20 compounds displaying antiviral activity against PRV. Among them, 14 compounds showed better antiviral activity than acyclovir. We found that compound 45 exhibited the strongest anti-PRV activity with an IC50 value of less than 40 nM. Our in vivo studies showed that treatment with 45 significantly reduced the viral loads and protected mice challenged with PRV. To clarify the mode of action of 45, we conducted a time of addition assay, an adsorption assay, and an entry assay. Our results indicated that 45 neither had a virucidal effect nor affected viral adsorption while significantly inhibiting PRV entry. Using the FITC-dextran uptake assay, we determined that 45 inhibits macropinocytosis. The actin-dependent plasma membrane protrusion, which is important for macropinocytosis, was also suppressed by 45. Furthermore, the kinase DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) was predicted to be a potential target for 45. The binding of 45 to DYRK1A was confirmed by drug affinity responsive target stability and cellular thermal shift assay. Further analysis revealed that knockdown of DYRK1A by siRNA suppressed PRV macropinocytosis and the tumor necrosis factor alpha-TNF-induced formation of protrusions. These results suggested that 45 could restrain PRV macropinocytosis by targeting DYRK1A. Together, these findings reveal a unique mechanism through which ß-carboline derivatives restrain PRV infection, pointing to their potential value in the development of anti-PRV agents.


Asunto(s)
Antivirales , Carbolinas , Herpesvirus Suido 1 , Animales , Humanos , Ratones , Aciclovir/farmacología , Aciclovir/toxicidad , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Carbolinas/química , Carbolinas/farmacología , Carbolinas/uso terapéutico , Técnicas de Silenciamiento del Gen , Herpesvirus Suido 1/efectos de los fármacos , Concentración 50 Inhibidora , Pinocitosis/efectos de los fármacos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Seudorrabia/tratamiento farmacológico , Seudorrabia/prevención & control , Seudorrabia/virología , Internalización del Virus/efectos de los fármacos , Células HeLa , Modelos Químicos , Quinasas DyrK
14.
J Biol Chem ; 299(5): 104582, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871762

RESUMEN

The ability to define functional interactions between enzymes and their substrates is crucial for understanding biological control mechanisms; however, such methods face challenges in the transient nature and low stoichiometry of enzyme-substrate interactions. Now, we have developed an optimized strategy that couples substrate-trapping mutagenesis to proximity-labeling mass spectrometry for quantitative analysis of protein complexes involving the protein tyrosine phosphatase PTP1B. This methodology represents a significant shift from classical schemes; it is capable of being performed at near-endogenous expression levels and increasing stoichiometry of target enrichment without a requirement for stimulation of supraphysiological tyrosine phosphorylation levels or maintenance of substrate complexes during lysis and enrichment procedures. Advantages of this new approach are illustrated through application to PTP1B interaction networks in models of HER2-positive and Herceptin-resistant breast cancer. We have demonstrated that inhibitors of PTP1B significantly reduced proliferation and viability in cell-based models of acquired and de novo Herceptin resistance in HER2-positive breast cancer. Using differential analysis, comparing substrate-trapping to wild-type PTP1B, we have identified multiple unreported protein targets of PTP1B with established links to HER2-induced signaling and provided internal validation of method specificity through overlap with previously identified substrate candidates. Overall, this versatile approach can be readily integrated with evolving proximity-labeling platforms (TurboID, BioID2, etc.), and is broadly applicable across all PTP family members for the identification of conditional substrate specificities and signaling nodes in models of human disease.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Transducción de Señal , Femenino , Humanos , Neoplasias de la Mama/genética , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas/metabolismo , Trastuzumab/farmacología , Mapeo de Interacción de Proteínas
15.
EMBO J ; 39(22): e104106, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32926474

RESUMEN

STING (STimulator of INterferon Genes) mediates protective cellular response to microbial infection and tissue damage, but its aberrant activation can lead to autoinflammatory diseases. Upon ligand stimulation, the endoplasmic reticulum (ER) protein STING translocates to endosomes for induction of interferon production, while an alternate trafficking route delivers it directly to the autophagosomes. Here, we report that phosphorylation of a specific tyrosine residue in STING by the epidermal growth factor receptor (EGFR) is required for directing STING to endosomes, where it interacts with its downstream effector IRF3. In the absence of EGFR-mediated phosphorylation, STING rapidly transits into autophagosomes, and IRF3 activation, interferon production, and antiviral activity are compromised in cell cultures and mice, while autophagic activity is enhanced. Our observations illuminate a new connection between the tyrosine kinase activity of EGFR and innate immune functions of STING and suggest new experimental and therapeutic approaches for selective regulation of STING functions.


Asunto(s)
Receptores ErbB/metabolismo , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Tirosina/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Receptores ErbB/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Células RAW 264.7 , Transducción de Señal , Transcriptoma
16.
EMBO J ; 39(4): e102856, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31922267

RESUMEN

Plant pattern recognition receptors (PRRs) perceive pathogen-associated molecular patterns (PAMPs) to activate immune responses. Medium-chain 3-hydroxy fatty acids (mc-3-OH-FAs), which are widely present in Gram-negative bacteria, were recently shown to be novel PAMPs in Arabidopsis thaliana. The Arabidopsis PRR LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) is a G-type lectin receptor-like kinase that recognizes mc-3-OH-FAs and subsequently mounts an immune response; however, the mechanisms underlying LORE activation and downstream signaling are unexplored. Here, we report that one of the mc-3-OH-FAs, 3-OH-C10:0, induces phosphorylation of LORE at tyrosine residue 600 (Y600). Phosphorylated LORE subsequently trans-phosphorylates the receptor-like cytoplasmic kinase PBL34 and its close paralogs, PBL35 and PBL36, and therefore activates plant immunity. Phosphorylation of LORE Y600 is required for downstream phosphorylation of PBL34, PBL35, and PBL36. However, the Pseudomonas syringae effector HopAO1 targets LORE, dephosphorylating the tyrosine-phosphorylated Y600 and therefore suppressing the immune response. These observations uncover the mechanism by which LORE mediates signaling in response to 3-OH-C10:0 in Arabidopsis.


Asunto(s)
Arabidopsis/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Pseudomonas syringae/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Lectinas/metabolismo , Lipopolisacáridos/administración & dosificación , Fosforilación , Enfermedades de las Plantas/microbiología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Tirosina/metabolismo
17.
Fish Shellfish Immunol ; 152: 109776, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019128

RESUMEN

Type I IFNs are a subset of cytokines exerting their antiviral effects mainly through the JAK-STAT signalling. Immunogenetic studies have shown that fish possess key components of IFN-JAK-STAT cascade, but the information about the distinct responses of STAT1 and STAT2 to different IFNs is rather limited in fish. Here, we identified and cloned STAT1 and STAT2 genes (named as On-STAT1 and On-STAT2) from tilapia, Oreochromis niloticus. On-STAT1 and On-STAT2 genes were detected in all orangs/tissues examined, and were rapidly induced in spleen, head kidney, and liver following the stimulation of poly(I:C). In addition, the stimulation of poly(I:C), poly(A:T), and different subgroups of recombinant IFNs could induce the expression of On-STAT1 and On-STAT2 in TA-02 cells with distinct induction levels. Importantly, On-STAT2 was rapidly phosphorylated by all three subgroups of IFNs, but the phosphorylation of On-STAT1 was only observed in IFNc- and IFNh-treated TA-02 cells, reflecting the distinct activation of STAT by different subgroups of fish IFNs. The present results thus contribute to better understanding of the JAK-STAT signalling mediated by different subgroups of IFNs in fish.

18.
Mol Cell ; 64(5): 859-874, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27867011

RESUMEN

Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/metabolismo , Mitocondrias/enzimología , Complejo Piruvato Deshidrogenasa/metabolismo , Acetil-CoA C-Acetiltransferasa/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Factor de Crecimiento Epidérmico/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Células 3T3 NIH , Neoplasias/enzimología , Neoplasias/patología , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
19.
Cell Biochem Funct ; 42(1): e3930, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269523

RESUMEN

Mammalian sperm remain quiescent but fertile for several weeks in cauda epididymis. Although several sperm quiescent factors of epididymal plasma have been identified in goat, pig and cattle; however, little is known in sheep. In the present study, purification and characterization of a novel sperm quiescent protein of ovine cauda epididymal plasma (CEP) was carried out. The sperm quiescent protein was partially purified by hydroxyapatite gel adsorption chromatography followed by DEAE-sepharose® anion exchange chromatography. In the latter, the sperm quiescent activity was eluted both in 0.05 and 0.2 M potassium phosphate buffer (pH 7.5) fractions having a predominant protein of about 80 and 70 kDa with 87% and 63% homogeneity, respectively. The proteins were designated as motility-inhibitory factor of sheep I and II (MIFS-I and II), respectively. Significant (about 60%) inhibition of sperm motility was observed following treatment of cauda epididymal sperm with 6 and 12 µg/mL of partially purified MIFS-I and II, respectively. Specific activities of the partially purified MIFS-I and II were 563 and 261 U/mg of protein, while the fold-purification of the activity were 5119 and 2373, respectively. Both the proteins were heat-labile and the activity was completely lost following incubation at 100°C for 5 min. Further, the partially purified MIFS-I (5 µg/mL) caused significant reduction in in vitro sperm capacitation and slight decline in tyrosine phosphorylated p72 and p52 proteins; however the protein was nontoxic to sperm. Mass spectrometric analysis of MIFS-I revealed significant identity with human semaphorin 3D. Both dot blot and western blot analysis demonstrated cross-reactivity of MIFS-I with polyclonal anti-human SEMA3D antibody. It was concluded that the MIFS-I of ovine CEP was putative ovine semaphorin 3D protein having potent sperm quiescent and decapacitating activities and it possibly acts through inhibition of protein tyrosine phosphorylation.


Asunto(s)
Epidídimo , Semaforinas , Humanos , Masculino , Animales , Ovinos , Bovinos , Porcinos , Motilidad Espermática , Semen , Anticuerpos , Tirosina , Mamíferos
20.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33376208

RESUMEN

The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.


Asunto(s)
Polaridad Celular/fisiología , Escherichia coli/metabolismo , Transporte de Proteínas/fisiología , Proteínas Bacterianas/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosforilación , Azúcares/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA