Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(5): 860-874.e19, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28803730

RESUMEN

Lower urinary tract infections are among the most common human bacterial infections, but extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine flow, that prevent the ascent of bladder microbes. Here, we show that the regional hypersalinity, required for the kidney's urine-concentrating function, instructs epithelial cells to produce chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. This hypersaline environment also increases the intrinsic bactericidal and neutrophil chemotactic activities of MNPs to generate a zone of defense. Because MNP positioning and function are dynamically regulated by the renal salt gradient, we find that patients with urinary concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory role for the homeostatic function of a vital organ in optimizing tissue defense.


Asunto(s)
Riñón/inmunología , Fagocitos/inmunología , Animales , Línea Celular , Quimiocina CCL2/metabolismo , Quimiocinas/inmunología , Diabetes Insípida , Humanos , Riñón/citología , Médula Renal/inmunología , Receptores de Lipopolisacáridos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Salinidad , Sodio/metabolismo , Factores de Transcripción/genética , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Orina/química , Escherichia coli Uropatógena/fisiología
2.
Immunity ; 45(6): 1258-1269, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27939674

RESUMEN

Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1ß (IL-1ß) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding.


Asunto(s)
Quimasas/inmunología , Citotoxinas/inmunología , Células Epiteliales/microbiología , Mastocitos/inmunología , Infecciones Urinarias/inmunología , Animales , Degranulación de la Célula/inmunología , Línea Celular , Gránulos Citoplasmáticos/química , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Kidney Int ; 105(3): 524-539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158182

RESUMEN

The urinary tract is constantly exposed to microorganisms. Host defense mechanisms in protection from microbial colonization and development of urinary tract infections require better understanding to control kidney infection. Here we report that the lectin collectin 11 (CL-11), particularly kidney produced, has a pivotal role in host defense against uropathogen infection. CL-11 was found in mouse urine under normal and pathological conditions. Mice with global gene ablation of Colec11 had increased susceptibility to and severity of kidney and to an extent, bladder infection. Mice with kidney-specific Colec11 ablation exhibited a similar disease phenotype to that observed in global Colec11 deficient mice, indicating the importance of kidney produced CL-11 for protection against kidney and bladder infection. Conversely, intravesical or systemic administration of recombinant CL-11 reduced susceptibility to and severity of kidney and bladder infection. Mechanism analysis revealed that CL-11 can mediate several key innate defense mechanisms (agglutination, anti- adhesion, opsonophagocytosis), and limit local inflammatory responses to pathogens. Furthermore, CL-11-mediated innate defense mechanisms can act on clinically relevant microorganisms including multiple antibiotic resistant strains. CL-11 was detectable in eight of 24 urine samples from patients with urinary tract infections but not detectable in urine samples from ten healthy individuals. Thus, our findings demonstrate that CL-11 is a key factor of host defense mechanisms in kidney and bladder infection with therapeutic potential for human application.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Ratones , Animales , Vejiga Urinaria , Riñón , Colectinas/genética
4.
BMC Microbiol ; 24(1): 190, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816687

RESUMEN

BACKGROUND: Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS: MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS: This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.


Asunto(s)
Endopeptidasas , Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Femenino , Humanos , Ratones , Modelos Animales de Enfermedad , Endopeptidasas/genética , Endopeptidasas/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Peptidoglicano/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad , Escherichia coli Uropatógena/enzimología , Escherichia coli Uropatógena/efectos de los fármacos , Virulencia
5.
Arch Microbiol ; 206(10): 394, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245770

RESUMEN

Escherichia coli can colonise the urogenital tract of individuals without causing symptoms of infection, in a condition referred to as asymptomatic bacteriuria (ABU). ABU isolates can protect the host against symptomatic urinary tract infections (UTIs) by bacterial interference against uropathogenic E. coli (UPEC). The aim of this study was to investigate the genotypic and phenotypic characteristics of five ABU isolates from midstream urine samples of adults. Comparative genomic and phenotypic analysis was conducted including an antibiotic resistance profile, pangenome analysis, and a putative virulence profile. Based on the genome analysis, the isolates consisted of one from phylogroup A, three from phylogroup B2, and one from phylogroup D. Two of the isolates, PUTS 58 and SK-106-1, were noted for their lack of antibiotic resistance and virulence genes compared to the prototypic ABU strain E. coli 83,972. This study provides insights into the genotypic and phenotypic profiles of uncharacterised ABU isolates, and how relevant fitness and virulence traits can impact their potential suitability for therapeutic bacterial interference.


Asunto(s)
Antibacterianos , Bacteriuria , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Genotipo , Fenotipo , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Bacteriuria/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/clasificación , Infecciones por Escherichia coli/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Virulencia/genética , Filogenia , Adulto , Factores de Virulencia/genética , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana
6.
BMC Microbiol ; 23(1): 300, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872476

RESUMEN

BACKGROUND: Urinary tract infections represent one of the most frequent hospital and community-acquired infections with uropathogenic Escherichia coli (UPEC) being the main causative agent. The global increase in the emergence of multidrug-resistant (MDR) UPEC necessitates exploring novel approaches. Repurposing natural products as anti-quorum sensing (QS) agents to impede bacterial virulence is gaining momentum nowadays. Hence, this study investigates the anti-QS potentials of carvacrol, cinnamaldehyde, and eugenol against E. coli isolated from urine cultures of Egyptian patients. RESULTS: Antibiotic susceptibility testing was performed for 67 E. coli isolates and 94% of the isolates showed MDR phenotype. The usp gene was detected using PCR and accordingly, 45% of the isolates were categorized as UPEC. Phytochemicals, at their sub-inhibitory concentrations, inhibited the swimming and twitching motilities of UPEC isolates, with eugenol showing the highest inhibitory effect. The agents hindered the biofilm-forming ability of the tested isolates, at two temperature sets, 37 and 30 °C, where eugenol succeeded in significantly inhibiting the biofilm formation by > 50% at both investigated temperatures, as compared with untreated controls. The phytochemicals were shown to downregulate the expression of the QS gene (luxS) and critical genes related to motility, asserting their anti-QS potential. Further, the combinatory activity of the phytoproducts with five antibiotics was assessed by checkerboard assay. The addition of the phytoproducts significantly reduced the minimum inhibitory concentrations of the antibiotics and generated several synergistic or partially synergistic combinations, some of which have not been previously explored. CONCLUSIONS: Overall, carvacrol, cinnamaldehyde, and eugenol could be repurposed as potential anti-QS agents, which preferentially reduce the QS-based communication and attenuate the cascades of gene expression, thus decreasing the production of virulence factors in UPEC, and eventually, subsiding their pathogenicity. Furthermore, the synergistic combinations of these agents with antibiotics might provide a new perspective to circumvent the side effects brought about by high antibiotic doses, thereby paving the way for overcoming antibiotic resistance.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Eugenol/farmacología , Eugenol/uso terapéutico , Egipto , Antibacterianos/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología
7.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108743

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infections (UTIs) in hospitalised and non-hospitalised patients. Genomic analysis was used to gain further insight into the molecular characteristics of UPEC isolates from Saudi Arabia. A total of 165 isolates were collected from patients with UTIs between May 2019 and September 2020 from two tertiary hospitals in Riyadh, Saudi Arabia. Identification and antimicrobial susceptibility testing (AST) were performed using the VITEK system. Extended-spectrum ß-lactamase (ESBL)-producing isolates (n = 48) were selected for whole genome sequencing (WGS) analysis. In silico analysis revealed that the most common sequence types detected were ST131 (39.6%), ST1193 (12.5%), ST73 (10.4%), and ST10 (8.3%). Our finding showed that blaCTX-M-15 gene was detected in the majority of ESBL isolates (79.2%), followed by blaCTX-M-27 (12.5%) and blaCTX-M-8 (2.1%). ST131 carried blaCTX-M-15 or blaCTX-M-27, and all ST73 and ST1193 carried blaCTX-M-15. The relatively high proportion of ST1193 in this study was notable as a newly emerged lineage in the region, which warrants further monitoring.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Infecciones por Escherichia coli/epidemiología , Escherichia coli Uropatógena/genética , Centros de Atención Terciaria , Arabia Saudita/epidemiología , beta-Lactamasas/genética , Infecciones Urinarias/epidemiología , Genómica , Antibacterianos
8.
Microb Pathog ; 162: 105348, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34871727

RESUMEN

This study aimed to identify and characterize integrons among multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) from outpatients in Mexico City, Mexico. PCR assays were used to screen for the presence of class 1, 2 and 3 integrons, whose PCR products were sequenced to identify the inserted gene cassettes within the variable regions. Out of 83 tested strains, 53 (63.9%) were positive for the presence of class 1 integrons, whereas no integrons were detected in the remaining strains, regardless of their classes. Most of the strains carrying the intI1 gene belonged to the extraintestinal B2 (41.5%) and commensal A (32.1%) phylogroups, and to a lesser extent, the extraintestinal D (20.8%) and commensal B1 (5.7%) phylogroups. Moreover, 8 different gene cassette arrangements were detected, with dfrA17 and aadA5 being the most common (32.1% of the class 1 integron-positive strains), which confer resistance to trimethoprim/sulfamethoxazole and aminoglycosides, respectively. Our results suggest that class 1 integrons are widely distributed among MDR-UPEC strains in Mexico, which may directly or indirectly contribute to the selection of MDR strains. These findings are important for a better understanding of the factors and mechanisms that promote multidrug resistance among UPEC strains.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Uropatógena , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Humanos , Integrones/genética , México , Escherichia coli Uropatógena/genética
9.
Int Microbiol ; 25(3): 665-667, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35061133

RESUMEN

Although phage therapy is still in the research and development stage, there are already a small number of cases where phages have been successfully used as an alternative treatment for multidrug-resistant infections. Given this, this Commentary discusses the potential contribution of phage therapy to combat urinary tract infections.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Infecciones Urinarias , Humanos , Infecciones Urinarias/microbiología , Infecciones Urinarias/terapia
10.
Immunology ; 164(1): 3-14, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33763853

RESUMEN

Urinary tract infections (UTI) are among the most prevalent infectious diseases and the most common cause of nosocomial infections, worldwide. Uropathogenic E. coli (UPEC) are responsible for approximately 80% of all UTI, which most commonly affect the bladder. UPEC colonize the urinary tract by ascension of the urethra, followed by cell invasion, and proliferation inside and outside urothelial cells, thereby causing symptomatic infections and quiescent intracellular reservoirs that may lead to recurrence. Sugars, or glycans, are key molecules for host-pathogen interactions, and UTI are no exception. Surface glycans regulate many of the events associated with UPEC adhesion and infection, as well as induction of the host immune response. While the bacterial protein FimH binds mannose-containing host glycoproteins to initiate infection and UPEC-secreted polysaccharides block immune mechanisms to favour intracellular replication, host glycans on the urothelial surface and on secreted glycoproteins prevent or limit infection by inhibiting UPEC adhesion. Given the importance of glycans during UTI, here we review the glycobiology of UPEC infection to highlight fundamental sugar-mediated processes of immunological interest for their potential clinical applications. Interdisciplinary approaches incorporating glycomics and infection biology may help to develop novel non-antibiotic-based therapeutic strategies for bacterial infections as the spread of antimicrobial-resistant uropathogens is currently threatening modern healthcare systems.


Asunto(s)
Polisacáridos/metabolismo , Sistema Urinario/inmunología , Escherichia coli Uropatógena/fisiología , Animales , Infecciones por Escherichia coli , Glicómica , Interacciones Huésped-Patógeno , Humanos , Polisacáridos/inmunología , Infecciones Urinarias , Virulencia
11.
Microb Pathog ; 161(Pt B): 105295, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34801647

RESUMEN

Improvements in bacterial culturing and DNA sequencing techniques have revealed a diverse, and hitherto unknown, urinary tract microbiome (urobiome). The potential role of this microbial community in contributing to health and disease, particularly in the context of urinary tract infections (UTIs) is of significant clinical importance. However, while several studies have confirmed the existence of a core urobiome, the role of its constituent microbes is not yet fully understood, particularly in the context of health and disease. Herein, we review the current state of the art, concluding that the urobiome represents an important component of the body's innate immune defences, and a potentially rich resource for the development of alternative treatment and control strategies for UTIs.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Sistema Urinario , Escherichia coli Uropatógena , Humanos , Infecciones Urinarias/tratamiento farmacológico
12.
Microb Pathog ; 161(Pt B): 105288, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34780972

RESUMEN

Type 1 fimbriae are responsible for bacterial pathogenicity and biofilm production, which are important virulence factors in uropathogenic Escherichia coli strains. Many articles are published on fimH, but each examined a specific aspect of this protein. The current review study aimed at focusing on structure and conformational changes and describing efforts to use this protein in novel potential treatments for urinary tract infections, typing methods, and expression systems. The current study was the first review that briefly and effectively examined issues related to fimH adhesin.


Asunto(s)
Adhesinas de Escherichia coli , Infecciones por Escherichia coli , Proteínas Fimbrias , Infecciones Urinarias , Escherichia coli Uropatógena , Adhesinas de Escherichia coli/genética , Proteínas Fimbrias/genética , Fimbrias Bacterianas , Humanos , Escherichia coli Uropatógena/genética
13.
Microb Pathog ; 161(Pt A): 105256, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34695556

RESUMEN

Elucidation of genetic determinants via whole genome sequence (WGS) analyses can help understand the high risk multidrug-resistant (MDR) Uropathogenic Escherichia coli (UPEC) associated with urinary tract infections (UTI) and its evasion strategies from treatment. We investigated the WGS of 30 UPEC strains from UTI samples across the world (2016-2019) and found 25 UPEC strains carrying 2-23 antibiotic resistance genes (ARGs) scattered across 1-3 plasmids per strain. Different ARGs (blaTEM, blaCTXM, blaNDM, blaOXA, blaCMY) encoding extended-spectrum beta-lactamases (TEM, CTXM, CMY) and carbapenemases (NDM, OXA) were found in 24/30, ARGs encoding aminoglycoside modifying enzymes (AAC, APH, AAD) variants in 23/30, trimethoprim ARGs (dfrA17, dfrA12, dfrA5, dfrB4 variants) encoding dihydrofolate reductase in 19/30 and sulfonamide ARGs (sul1, sul2, sul3) encoding dihydropteroate synthase and macrolide ARGs (mph1) encoding macrolide 2' phosphotransferase in 15/30 UPEC strains. Collectively the ARGs were distributed in different combinations in 40 plasmids across UPEC strains with 20 plasmids displaying co-occurrence of multiple ARGs conferring resistance to beta lactam, aminoglycoside, sulfonamide, trimethoprim and macrolide antibiotics. These resistance plasmids belonged to seven incompatibility groups (IncF, IncI, IncC, IncH, IncN, IncB and Col), with IncFI and IncFII being the predominant resistance plasmids. Additionally, we observed co-occurrence of specific mutation pattern in quinolone resistance determining region (QRDR) viz., DNA gyrase (gyrA: S83L, D87N), and topoisomerase IV (parC: S80I, E84V; parE: I529L) in 18/30 strains. The strains also harbored diverse virulence genes, such as fimH, gad, iss, iha, ireA, iroN, cnf1 and san. Multilocus sequence typing (MLST) reconfirmed ST131(n = 10) as the predominant global high-risk clonal strain causing UTI. In summary, our findings contribute to better understand the plasmid mediated ARGs and its encoded enzymes that may contribute in antibiotic inactivation/modification or alteration in the antibiotic target site in high risk MDR hypervirulent UPEC strains causing UTI. The study reinforces the need to characterize and design appropriate inhibitors to counterattack different enzymes and devise strategies to curtail resistance plasmid.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Uropatógena , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos/genética , Escherichia coli Uropatógena/genética , beta-Lactamasas/genética
14.
J Sci Food Agric ; 101(3): 1193-1201, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32785931

RESUMEN

BACKGROUND: A combination of high-pressure processing (HPP) and antimicrobials is a well-known approach for enhancing the microbiological safety of foods. However, few studies have applied multiple antimicrobials simultaneously with HPP, which could be an additional hurdle for microbial inactivation. The present study applied a full factorial design to investigate the impact of HPP (225-325 MPa; 10-20 min), allyl isothiocyanate (AITC) (0.3-0.9 g kg-1 ) and trans-cinnamaldehyde (tCinn) (1.0-2.0 g kg-1 ) on the inactivation of Shiga toxin-producing Escherichia coli (STEC) O157:H7 and uropathogenic E. coli (UPEC) in ground chicken meat. RESULTS: The regulatory requirement of 5-log reduction was achieved at 305 MPa, 18 min, 0.8 g kg-1 AITC and 1.7 g kg-1 tCinn for STEC O157:H7 and at 293 MPa, 16 min, 0.6 g kg-1 AITC and 1.6 g kg-1 tCinn for UPEC, as specified by response surface analysis and verified via experiments. The surviving population was eliminated by post-treatment storage of 9 days at 10 °C. The developed linear regression models showed r2 > 0.9 for the E. coli inactivation. The developed dimensionless non-linear regression models covered a factorial range slightly wider than the original experimental limit, with probability Pr > F (< 0.0001). CONCLUSION: Simultaneous use of AITC and tCinn reduced not only the necessary concentration of each compound, but also the intensity of high-pressure treatments, at the same time achieving a similar level of microbial inactivation. STEC O157:H7 was found to be more resistant than UPEC to the HPP-AITC-tCinn stress. The developed models may be applied in commercial application to enhance the microbiological safety of ground chicken meat. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Acroleína/análogos & derivados , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Isotiocianatos/farmacología , Carne/microbiología , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Acroleína/farmacología , Animales , Pollos , Conservación de Alimentos/instrumentación , Presión Hidrostática , Carne/análisis , Viabilidad Microbiana/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo
15.
Mol Hum Reprod ; 26(4): 215-227, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32011693

RESUMEN

Ascending bacterial urinary tract infections can cause epididymo-orchitis. In the cauda epididymidis, this frequently leads to persistent tissue damage. Less coherent data is available concerning the functional consequences of epididymo-orchitis on testis and caput epididymidis. This in vivo study addresses the functional and spatial differences in responsiveness of murine epididymis and testis to infection with uropathogenic Escherichia coli (UPEC). Whole transcriptome analysis (WTA) was performed on testis, caput, corpus and cauda epididymidis of adult C57BL/6 J wildtype mice. Following UPEC-induced epididymo-orchitis in these mice, epididymal and testicular tissue damage was evaluated histologically and semi-quantitatively at 10 days and 31 days post-inoculation. Expression of inflammatory markers and candidate antimicrobial genes were analysed by RT-qPCR. WTA revealed distinct differences in gene signatures between caput and cauda epididymidis, particularly amonst immunity-related genes. Cellular and molecular signs of testicular inflammation and disruption of spermatogenesis were noticed at day 10, but recovery was observed by day 31. In contrast to the cauda, the caput epididymidis did not reveal any signs of gross morphological damage or presence of pro-inflammatory processes despite confirmed infection. In contrast to beta-defensins, known UPEC-associated antimicrobial peptides (AMP), like Lcn2, Camp and Lypd8, were inherently highly expressed or upregulated in the caput following infection, potentially allowing an early luminal protection from UPEC. At the time points investigated, the caput epididymidis was protected from any obvious infection/inflammation-derived tissue damage. Studies addressing earlier time-points will conclude whether in the caput epididymidis a pro-inflammatory response is indeed not essential for effective protection from UPEC.


Asunto(s)
Epididimitis/patología , Infecciones por Escherichia coli/patología , Orquitis/patología , Infecciones Urinarias/patología , Escherichia coli Uropatógena , Animales , Epidídimo/inmunología , Epidídimo/patología , Epididimitis/inmunología , Epididimitis/microbiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica , Inmunidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Orquitis/inmunología , Orquitis/microbiología , Testículo/inmunología , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , beta-Defensinas/metabolismo
16.
Microb Pathog ; 138: 103772, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31589910

RESUMEN

Catheter associated urinary tract infection (CAUTI) is a highly prevalent hospital-acquired infection that is predominantly caused by uropathogenic Escherichia coli (UPEC). It adheres on catheter surface using type I pili as the initial step of pathogenesis that progresses to form biofilm. In this study, potential inhibitors against FimH adhesin of type I pili were screened computationally that yielded ten compounds. These were further validated in vitro against adhesion and biofilm formation. The compounds, 1-Amino-4-hydroxyanthraquinone (Disperse Red 15 or DR15) and 4-(4'-chloro-4-biphenylylsulfonylamino) benzoic acid (CB1) impaired adhesion and biofilm formation without inhibiting the planktonic growth. Also, both compounds inhibited cell assemblages like autoaggregation and swarming motility by unknown mechanisms. DR15 was further derivatised into N-(4-hydroxy-9,10-dioxo-9,10-dihydroanthracen-1-yl) undec-10-enamide that self-assembled with linseed oil, which was used as the coating material on urinary Foley catheters. The thin-film coating on the catheter did not leach when incubated in artificial urine and effectively restricted biofilm formation of UPEC. Altogether, the thin-film coating of urinary catheter with DR15 inhibited biofilm formation of UPEC and this application could potentially help to reduce CAUTI incidents in healthcare facilities.


Asunto(s)
Antraquinonas/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/crecimiento & desarrollo , Adhesinas de Escherichia coli , Antraquinonas/química , Sitios de Unión , Infecciones Relacionadas con Catéteres/etiología , Simulación por Computador , Evaluación Preclínica de Medicamentos , Infecciones por Escherichia coli/microbiología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Catéteres Urinarios/efectos adversos , Infecciones Urinarias/etiología
17.
Microb Pathog ; 148: 104544, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33010368

RESUMEN

Urinary tract infections (UTIs) are one of the most common infections in women. The only proven preventive strategy for recurrent UTIs is prophylactic antibiotics. Given growing antibiotic resistance, the use of probiotics has been proposed as an alternative to antibiotics. Herein, we discuss the current evidence to support the possibility that exogenous lactobacilli may limit the pathogenicity of uropathogens such as E. coli. Probiotics appear to have a significant potential in prevention of recurrent UTI, however, additional data are needed to understand how they can be effectively used in clinical practice.


Asunto(s)
Infecciones por Escherichia coli , Probióticos , Infecciones Urinarias , Escherichia coli , Infecciones por Escherichia coli/prevención & control , Femenino , Humanos , Lactobacillus , Infecciones Urinarias/prevención & control
18.
Eur J Clin Microbiol Infect Dis ; 39(9): 1753-1760, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32399681

RESUMEN

Emergence of multidrug resistance (MDR) in uropathogenic E. coli (UPEC) demands alternative therapeutic interventions. Bactericidal antibiotics at their sub-inhibitory concentration stimulate production of reactive oxygen species (ROS) that results in oxidative stress, generates mutations, and alters transcription of different genes. Sub-inhibitory concentration of antibiotics facilitates selection of highly resistant population. Universal stress protein A (uspA) overexpression in MDR-UPEC at sub-inhibitory bactericidal antibiotics concentration was investigated to explore alternative survival strategy against them. Fifty clinical UPEC isolates were screened. Minimum inhibitory concentration (MIC) against three different bactericidal antibiotics (ciprofloxacin, CIP; ceftazidime, CAZ; gentamycin, GEN) was determined by broth dilution method; ROS production by DCFDA and overexpression of uspA by real-time PCR were determined at the sub-inhibitory concentration of antibiotics. DNA ladder formation and SEM studies were performed with drug untreated and treated samples. Statistical analysis was done by Student's t test and Pearson's correlation analysis; 25 out of 50 UPEC exhibited high MIC against CIP (> 200 µg/ml), CAZ (> 500 µg/ml), GEN (> 500 µg/ml), with varied ROS production (p ≤ 0.001) in treated than untreated controls. DNA ladder formation confirmed ROS production in drug-treated samples. SEM analysis revealed unaltered cell morphology in both untreated and drug-treated bacteria. uspA was universally overexpressed in all 25 UPEC. A significant correlation (p ≤ 0.001) between ROS production and uspA overexpression was observed in 19 out of 25 MDR isolates at sub-inhibitory doses of the bactericidal antibiotics. Therefore, this study highlights an alternative strategy that the MDR isolates may acquire when exposed to sub-inhibitory drug concentration for their survival.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Proteína Estafilocócica A/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/ultraestructura
19.
BMC Infect Dis ; 20(1): 453, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600258

RESUMEN

INTRODUCTION: Uropathogenic E. coli is the leading cause of Urinary tract infections (UTIs), contributing to 80-90% of all community-acquired and 30-50% of all hospital-acquired UTIs. Biofilm forming Uropathogenic E. coli are associated with persistent and chronic inflammation leading to complicated and or recurrent UTIs. Biofilms provide an environment for poor antibiotic penetration and horizontal transfer of virulence genes which favors the development of Multidrug-resistant organisms (MDRO). Understanding biofilm formation and antimicrobial resistance determinants of Uropathogenic E. coli strains will provide insight into the development of treatment options for biofilm-associated UTIs. The aim of this study was to determine the biofilm forming capability, presence of virulence genes and antimicrobial susceptibility pattern of Uropathogenic E. coli isolates in Uganda. METHODS: This was a cross-sectional study carried in the Clinical Microbiology and Molecular biology laboratories at the Department of Medical Microbiology, Makerere University College of Health Sciences. We randomly selected 200 Uropathogenic E. coli clinical isolates among the stored isolates collected between January 2018 and December 2018 that had significant bacteriuria (> 105 CFU). All isolates were subjected to biofilm detection using the Congo Red Agar method and Antimicrobial susceptibility testing was performed using the Kirby disk diffusion method. The isolates were later subjected PCR for the detection of Urovirulence genes namely; Pap, Fim, Sfa, Afa, Hly and Cnf, using commercially designed primers. RESULTS: In this study, 62.5% (125/200) were positive biofilm formers and 78% (156/200) of these were multi-drug resistant (MDR). The isolates were most resistant to Trimethoprim sulphamethoxazole and Amoxicillin (93%) followed by gentamycin (87%) and the least was imipenem (0.5%). Fim was the most prevalent Urovirulence gene (53.5%) followed by Pap (21%), Sfa (13%), Afa (8%), Cnf (5.5%) and Hyl (0%). CONCLUSIONS: We demonstrate a high prevalence of biofilm-forming Uropathogenic E. coli strains that are highly associated with the MDR phenotype. We recommend routine surveillance of antimicrobial resistance and biofilm formation to understand the antibiotics suitable in the management of biofilm-associated UTIs.


Asunto(s)
Antibacterianos/uso terapéutico , Biopelículas/crecimiento & desarrollo , Infecciones por Escherichia coli/epidemiología , Infecciones Urinarias/epidemiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad , Estudios Transversales , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Reacción en Cadena de la Polimerasa , Prevalencia , Uganda/epidemiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/aislamiento & purificación , Virulencia/genética , Factores de Virulencia/genética
20.
J Appl Microbiol ; 128(2): 387-400, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31573730

RESUMEN

AIMS: To study the individual and combined contribution of catechin, protocatechuic and vanillic acids to inhibit the adhesion of uropathogenic Escherichia coli (UPEC) on the surface of silicone catheters. METHODS AND RESULTS: The adhesion of UPEC to silicone catheters during the exposure to nonlethal concentrations of phenolic compounds was measured, as well as changes in motility, presence of fimbriae, extra-cellular polymeric substances, surface charge, hydrophobicity and membrane fluidity. The phenolic combination reduced 26-51% of motility, 1 log CFU per cm2 of adhered bacteria and 20-40% the carbohydrate and protein content in the biofilm matrix. Curli fimbriae, surface charge and cell hydrophobicity were affected to a greater extent by the phenolic combination. In the mixture, vanillic acid was the most effective for reducing bacterial adhesion, extra-polymeric substance production, motility, curli fimbriae and biofilm structure. Notwithstanding, protocatechuic acid caused major changes in the bacterial cell surface properties, whereas catechin affected the cell membrane functionality. CONCLUSION: Catechin, protocatechuic and vanillic acids have different bacterial cell targets, explaining the synergistic effect of their combination against uropathogenic E. coli. SIGNIFICANCE AND IMPACT OF STUDY: This study shows the contribution of catechin, protocatechuic and vanillic acids in producing a synergistic mixture against the adhesion of uropathogenic E. coli on silicone catheters. The action of catechin, vanillic and protocatechuic acids included specific contributions of each compound against the E. coli membrane's integrity, motility, surface properties and production of extracellular polymeric substances. Therefore, the studied mixture of phenolic compounds could be used as an antibiotic alternative to reduce urinary tract infections associated with silicone catheters.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Catequina/farmacología , Hidroxibenzoatos/farmacología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Ácido Vanílico/farmacología , Catéteres/microbiología , Sinergismo Farmacológico , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Fenoles/farmacología , Siliconas/análisis , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA