RESUMEN
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.
Asunto(s)
Ácidos Grasos , Lactobacillus , Vagina , Vaginosis Bacteriana , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Femenino , Humanos , Vagina/microbiología , Lactobacillus/metabolismo , Ácidos Grasos/metabolismo , Ácido Oléico/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Lactobacillus crispatus/metabolismo , Microbiota/efectos de los fármacos , Proteínas Bacterianas/metabolismoRESUMEN
Elevated bacterial sialidase activity in the female genital tract is strongly associated with poor health outcomes including preterm birth and bacterial vaginosis (BV). These negative effects may arise from sialidase-mediated degradation of the protective mucus layer in the cervicovaginal environment. Prior biochemical studies of vaginal bacterial sialidases have focused solely on the BV-associated organism Gardnerella vaginalis. Despite their implications for sexual and reproductive health, sialidases from other vaginal bacteria have not been characterized. Here, we show that vaginal Prevotella species produce sialidases that possess variable activity toward mucin substrates. The sequences of sialidase genes and their presence are largely conserved across clades of Prevotella from different geographies, hinting at their importance globally. Finally, we find that Prevotella sialidase genes and transcripts, including those encoding mucin-degrading sialidases from Prevotella timonensis, are highly prevalent and abundant in human vaginal genomes and transcriptomes. Together, our results identify Prevotella as a critical source of sialidases in the vaginal microbiome, improving our understanding of this detrimental bacterial activity.
Asunto(s)
Microbiota , Neuraminidasa , Prevotella , Vagina , Humanos , Prevotella/enzimología , Prevotella/genética , Prevotella/aislamiento & purificación , Neuraminidasa/metabolismo , Neuraminidasa/genética , Femenino , Vagina/microbiología , Mucinas/metabolismo , Vaginosis Bacteriana/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genéticaRESUMEN
Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs. Most of the tested bacteria did not affect the HIV-1 restrictive function of LCs. However, Prevotella timonensis induced a vast uptake of HIV-1 by vaginal LCs. Internalized virus remained infectious for days and uptake was unaffected by antiretroviral drugs. P. timonensis-exposed LCs efficiently transmitted HIV-1 to target cells both in vitro and ex vivo. Additionally, P. timonensis exposure enhanced uptake and transmission of the HIV-1 variants that establish infection after sexual transmission, the so-called Transmitted Founder variants. Our findings, therefore, suggest that P. timonensis might set the stage for enhanced HIV-1 susceptibility during vaginal dysbiosis and advocate targeted treatment of P. timonensis during bacterial vaginosis to limit HIV-1 infection.
Asunto(s)
Infecciones por VIH , VIH-1 , Antivirales , Disbiosis , Femenino , Humanos , Células de Langerhans , PrevotellaRESUMEN
Elevated inflammation in the female genital tract is associated with increased HIV risk. Cervicovaginal bacteria modulate genital inflammation; however, their role in HIV susceptibility has not been elucidated. In a prospective cohort of young, healthy South African women, we found that individuals with diverse genital bacterial communities dominated by anaerobes other than Gardnerella were at over 4-fold higher risk of acquiring HIV and had increased numbers of activated mucosal CD4+ T cells compared to those with Lactobacillus crispatus-dominant communities. We identified specific bacterial taxa linked with reduced (L. crispatus) or elevated (Prevotella, Sneathia, and other anaerobes) inflammation and HIV infection and found that high-risk bacteria increased numbers of activated genital CD4+ T cells in a murine model. Our results suggest that highly prevalent genital bacteria increase HIV risk by inducing mucosal HIV target cells. These findings might be leveraged to reduce HIV acquisition in women living in sub-Saharan Africa.
Asunto(s)
Cuello del Útero/microbiología , Infecciones por VIH/microbiología , Vagina/microbiología , Animales , Bacterias Anaerobias , Linfocitos T CD4-Positivos/inmunología , Estudios de Cohortes , Femenino , Citometría de Flujo , Humanos , Lactobacillus , Ratones , Microbiota/inmunología , Prevotella , SudáfricaRESUMEN
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.
Asunto(s)
Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Ribonucleótido Reductasas , Animales , Femenino , Cobayas , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL11/inmunología , Quimiocina CXCL11/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/inmunología , Ganglios Espinales/virología , Herpes Genital/inmunología , Herpes Genital/prevención & control , Herpesvirus Humano 2/inmunología , Células T de Memoria/inmunología , Ribonucleótido Reductasas/metabolismo , Vacunación , Vagina/virología , Vagina/inmunologíaRESUMEN
Hepatitis E virus (HEV) persists in the male genital tract that associates with infertility. However, the presence of HEV in the female genital tract is unreported. Vaginal secretions, cervical smears, and cervix uteri were collected to explore the presence of HEV in the female genital tract. HEV RNA and/or antigens were detected in the vaginal secretions, cervical smears, and the cervix uteri of women. The infectivity of HEV excreted into vaginal secretions was further validated in vitro. In addition, HEV replicates in the female genital tract were identified in HEV-infected animal models by vaginal injection or vaginal mucosal infection to imitate sexual transmission. Serious genital tract damage and inflammatory responses with significantly elevated mucosal innate immunity were observed in women or animals with HEV vaginal infection. Results demonstrated HEV replicates in the female genital tract and causes serious histopathological damage and inflammatory responses.
Asunto(s)
Líquidos Corporales , Hepatitis A , Virus de la Hepatitis E , Hepatitis E , Animales , Femenino , Masculino , Humanos , VaginaRESUMEN
Pelvic organ prolapse (POP) is a group of diseases caused by extracellular matrix (ECM) degradation in pelvic supportive tissues. Cysteine and serine rich nuclear protein 1 (CSRNP1) is involved in cell proliferation and survival regulation, and reportedly facilitates collagen breakdown in human chondrocytes. The present study aimed to probe the effect of CSRNP1 on collagen metabolism in human-derived vaginal fibroblasts. High expression of CSRNP1 was found in POP patient-derived vaginal fibroblasts in comparison to normal-derived vaginal fibroblasts. Following functional experiments revealed that CSRNP1 overexpression led to proliferation inhibition, apoptosis and collagen degradation in normal vaginal fibroblasts. In line with this, silencing of CSRNP1 inhibited hydrogen peroxide (H2O2)-triggered apoptosis, ROS generation and collagen loss in normal vaginal fibroblasts. Silencing of CSRNP1 also reduced the expression of cell senescence markers p21 and γ-H2Ax (the histone H2Ax phosphorylated at Ser139), as well as curbed collagen breakdown in normal vaginal fibroblasts caused by a DNA damage agent etoposide. Transcriptomic analysis of vaginal fibroblasts showed that differentially expressed genes affected by CSRNP1 overexpression were mainly enriched in the Wnt signaling pathway. Treatment with a Wnt pathway inhibitor DKK1 blocked CSRNP1 knockdown-caused collagen deposition. Mechanistically, CSRNP1 was identified to be a target of Snail family transcriptional repressor 2 (SNAI2). Forced expression of CSRNP1 reversed the anti-apoptotic, anti-senescent and anti-collagen loss effects of SNAI2 in normal vaginal fibroblasts exposed to H2O2 or etoposide. Our study indicates that the SNAI2/CSRNP1 axis may be a key driver in POP progression, which provides a potential therapeutic strategy for POP.
Asunto(s)
Apoptosis , Senescencia Celular , Colágeno , Daño del ADN , Fibroblastos , Estrés Oxidativo , Vagina , Femenino , Humanos , Apoptosis/genética , Proliferación Celular , Células Cultivadas , Senescencia Celular/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , Peróxido de Hidrógeno/farmacología , Prolapso de Órgano Pélvico/metabolismo , Prolapso de Órgano Pélvico/genética , Prolapso de Órgano Pélvico/patología , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Vagina/metabolismo , Vagina/citología , Vagina/patologíaRESUMEN
Women and girls represent a key population driving new HIV infections and persistence of the HIV pandemic. A key determinant of HIV susceptibility is the composition of the vaginal microbiome, which can influence the local immune cell population, inflammation status, and HIV prevention drug levels. While a low-diversity composition dominated by Lactobacillus crispatus is associated with a decreased risk of HIV acquisition, high diversity environments associated with bacterial vaginosis increase risk of HIV. Given the important role of the vaginal microbiome in determining HIV susceptibility, altering the microbiome towards a Lactobacillus-dominated state is an attractive complementary strategy to reduce HIV incidence rates. Here, we provide an overview of the mechanisms by which the vaginal microbiome may contribute to HIV acquisition risk. Furthermore, we address the advantages and limitations of historical treatments and emerging technologies under investigation to modify the vaginal microbiome, including: antibiotics, bacteriophages, probiotics, topicals, and engineered bacteria. By addressing the current state of vaginal microbiome knowledge and strategies for manipulation, we hope to amplify the growing calls for increased resources and research into vaginal microbial health, which will be essential to accelerating preventative efforts amongst the world's most vulnerable populations.
Asunto(s)
Infecciones por VIH , Microbiota , Vaginosis Bacteriana , Disbiosis , Femenino , Infecciones por VIH/epidemiología , Infecciones por VIH/terapia , Humanos , Vagina/microbiología , Vaginosis Bacteriana/epidemiología , Vaginosis Bacteriana/microbiología , Vaginosis Bacteriana/terapiaRESUMEN
BACKGROUND: Few investigations have assessed contributions of both vaginal bacteria and proinflammatory immune mediators to human immunodeficiency virus (HIV) acquisition risk in a prospective cohort. METHODS: We conducted a nested case-control study of African women who participated in a randomized placebo-controlled trial of daily oral versus vaginal tenofovir-based preexposure prophylaxis for HIV infection. Vaginal concentrations of 23 bacterial taxa and 16 immune mediators were measured. Relationships between individual bacterial concentrations or immune mediators and HIV risk were analyzed using generalized estimating equations in a multivariable model. Factor analysis assessed relationships between combinations of bacterial taxa, immune mediators, and HIV acquisition risk. RESULTS: We identified 177 HIV pre-seroconversion visits from 150 women who acquired HIV and 531 visits from 436 women who remained HIV uninfected. Fourteen bacterial taxa and 6 proinflammatory cytokines and chemokines were individually associated with greater HIV risk after adjusting for confounders. Women with all 14 taxa versus <14 taxa (adjusted odds ratio [aOR], 4.45 [95% confidence interval {CI}, 2.20-8.98]; P < .001) or all 6 immune mediators versus <6 mediators (aOR, 1.77 [95% CI, 1.24-2.52]; P < .001) had greater risk for HIV acquisition. Factor analysis demonstrated that a bacterial factor comprised of 14 high-risk bacterial taxa (aOR, 1.57 [95% CI, 1.27-1.93]; P < 0.001) and the interferon gamma-induced protein 10 (highest quartile: aOR, 3.19 [95% CI, 1.32-7.72]; P = 0.002) contributed to the highest HIV risk. CONCLUSIONS: Bacterial and host biomarkers for predicting HIV acquisition risk identify women at greatest risk for HIV infection and can focus prevention efforts.
RESUMEN
BACKGROUND: HIV-1 antiretroviral therapy (ART) alters hormonal contraceptive levels delivered via intravaginal ring (IVR) in a regimen specific manner. We explored the role of the IVR on vaginal microbial communities, vaginal short chain fatty acids (SCFAs), vaginal HIV shedding, and the effect of vaginal microbes on hormone concentrations in cisgender women with HIV (WWH). METHODS: Vaginal microbes were assessed by 16S RNA sequencing of weekly vaginal swabs, vaginal SCFA by mass spectrometry, HIV-1 shedding by nucleic acid amplification on vaginal aspirates, and bacterial vaginosis by Nugent scoring from 74 participants receiving an etonorgestrel/ethinyl estradiol (ENG/EE) intravaginal ring while on no ART (N=25), efavirenz-based ART (N=25), or atazanavir-based ART (N=24). RESULTS: At baseline, microbial communities of the 64 substudy eligible participants robustly classified as Lactobacillus crispatus--dominant (n=8), L. gasseri-dominant (n=2), L. iners-dominant (n=17), or mixed anaerobic communities (n=37). During IVR therapy, there was an increased probability of Lactobacillus-dominant community state types (CSTs) (odds-ratio=1.61, p=0.04). Vaginal CSTs were associated with Nugent scores. Bacterial vaginosis-associated bacteria were associated with significantly higher and L. iners with lower Nugent Scores (all p adj <0.1). Lactic acid levels were correlated with the relative abundance of Lactobacillus species (r2=0.574; p<0.001). Vaginal shedding of HIV-1 was less common in women with L. crispatus-dominant microbiomes (p=0.04). Mixed anaerobic vaginal communities modulated EE concentrations in a regimen-specific manner. CONCLUSIONS: Combined ENG/EE IVR therapy was associated with an increase in Lactobacillus-dominant vaginal microbial communities in WWH and may benefit those with bacterial vaginosis. EE levels were altered by the vaginal microbiota.
RESUMEN
BACKGROUND: Confounding introduced by individuals' sexual risk behavior is potentially a significant source of bias in HIV-1 prevention intervention studies. To more completely account for sexual behaviors when assessing the efficacy of the monthly dapivirine ring, a new longer-acting HIV-1 prevention option for women, we estimated per-sex-act risk reduction associated with product use. METHODS: We conducted a secondary analysis of data from MTN-020/ASPIRE, a phase 3, randomized, placebo-controlled efficacy trial of the dapivirine ring that recruited HIV-uninfected, African women aged 18-45 years. With cumulative sex acts as the time scale, we used multivariable Cox regression with inverse probability of censoring weights to estimate HIV-1 risk reduction associated with a rate of dapivirine release indicative of consistent product use. RESULTS: Women in the dapivirine ring group (n = 1187) had an estimated incidence rate of 2.3 (95% confidence interval [CI], 1.8-3.1) HIV-1 acquisition events per 10 000 sex acts versus 3.6 (95% CI, 2.9-4.4) per 10 000 acts in the placebo group (n = 1187). Dapivirine release indicative of consistent ring use was associated with a 63% (95% CI, 33%-80%) per-sex-act HIV-1 risk reduction. CONCLUSIONS: These results support the efficacy of the dapivirine vaginal ring for HIV-1 prevention and help to inform decision-making for women, providers, and policymakers regarding product use. CLINICAL TRIALS REGISTRATION: NCT01617096.
Asunto(s)
Fármacos Anti-VIH , Dispositivos Anticonceptivos Femeninos , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Pirimidinas , Femenino , Humanos , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/prevención & control , Infecciones por VIH/epidemiología , Conducta de Reducción del Riesgo , Adolescente , Adulto Joven , Adulto , Persona de Mediana EdadRESUMEN
Dysbiosis of the vaginal microbiome poses a serious risk for sexual human immunodeficiency virus type 1 (HIV-1) transmission. Prevotella spp are abundant during vaginal dysbiosis and associated with enhanced HIV-1 susceptibility; however, underlying mechanisms remain unclear. Here, we investigated the direct effect of vaginal bacteria on HIV-1 susceptibility of vaginal CD4+ T cells. Notably, pre-exposure to Prevotella timonensis enhanced HIV-1 uptake by vaginal T cells, leading to increased viral fusion and enhanced virus production. Pre-exposure to antiretroviral inhibitors abolished P timonensis-enhanced infection. Our study shows that the vaginal microbiome directly affects mucosal CD4+ T-cell susceptibility, emphasizing importance of vaginal dysbiosis diagnosis and treatment.
Asunto(s)
Linfocitos T CD4-Positivos , Disbiosis , Infecciones por VIH , VIH-1 , Prevotella , Vagina , Humanos , Femenino , Prevotella/aislamiento & purificación , Disbiosis/microbiología , Vagina/microbiología , Vagina/virología , Vagina/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/microbiología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Susceptibilidad a Enfermedades , Microbiota , Internalización del VirusRESUMEN
BACKGROUND: Abnormal cervical cytology is commonly observed in women with human immunodeficiency virus (WWH). METHODS: A cross-sectional study was conducted with 130 WWH and 147 age-matched healthy controls, who underwent gynecological examinations at Beijing Ditan Hospital. The presence of abnormal cervical cytology in WWH was predicted after performing a logistic regression analysis. RESULTS: Multivariate logistic regression revealed 3 independent factors, among which CD4 cell count ≥350 cells/µL was the protective factor, while human papillomavirus infection and abnormal vaginal pH were the risk factors. CONCLUSIONS: Vaginal microecological disorders can increase the risk of abnormal cervical cytology in WWH.
Asunto(s)
Infecciones por VIH , Infecciones por Papillomavirus , Enfermedades Vaginales , Adulto , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven , Estudios de Casos y Controles , Recuento de Linfocito CD4 , Cuello del Útero/patología , Cuello del Útero/virología , China/epidemiología , Estudios Transversales , Infecciones por VIH/complicaciones , Modelos Logísticos , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/complicaciones , Factores de Riesgo , Vagina/virología , Vagina/patología , Enfermedades Vaginales/virología , Enfermedades Vaginales/epidemiologíaRESUMEN
BACKGROUND: In the cervicovaginal environment, HPV acquisition and cervical cancer progression are linked to non-Lactobacillus dominance, of which Atopobiaceae are key taxa. We hypothesize that Atopobiaceae modulates the cervicovaginal microenvironment to promote HPV persistence and progression to cancer. However, the extent to which Atopobiaceae impact the immunometabolic microenvironment is poorly understood. METHODS: We investigated Atopobiaceae in a cohort of primarily Hispanic and non-Hispanic White women who were HPV-negative (n=20), HPV-positive (n=31) without dysplasia, diagnosed with cervical dysplasia (n=38), or newly diagnosed with invasive cervical carcinoma (n=9). Microbiome data was integrated with clinical and demographic surveys, immunoproteomics, and metabolomics data. RESULTS: Atopobiaceae identified were Fannyhessea vaginae, Fannyhessea massiliense, Fannyhessea species type 2, Lancefieldella deltae, and an unclassified species. A higher prevalence of Atopobiaceae was observed in women who were Hispanic and had higher gravidity and parity. F. species type 2 and F. vaginae were observed with infections of high-risk HPV genotypes 31 and 52. Atopobiacaeae were negatively correlated with Lactobacillus and positively correlated to Sneathia, Dialister, Anaerococcus, Prevotella, and Bifidobacterium/Gardnerella. Proinflammatory cytokines (IL-1α, IL-1ß, IL-12, TNFα), immune checkpoint proteins (PD-L1, LAG3), and cancer biomarkers (CEA, MIF, TRAIL) were positively associated with Atopobiaceae-rich profiles. Pro-oncogenic metabolites, including 4-hydroxybutyrate and sphingosine, were also elevated in women colonized by Atopobiaceae. CONCLUSIONS: Our data implicate Atopobiaceae in lipid modulation, oxidative stress, inflammatory responses, and immune evasion, which may contribute to cancer. This study highlights a key family of pathogenic cervicovaginal bacteria that could be exploited to monitor HPV persistence and/or targeted to prevent HPV-mediated cancer.
RESUMEN
Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.
Asunto(s)
Toxinas Bacterianas , Lactobacillus , Choque Séptico , Infecciones Estafilocócicas , Femenino , Humanos , Staphylococcus aureus/metabolismo , Choque Séptico/microbiología , Señales (Psicología) , Enterotoxinas/metabolismo , Superantígenos/metabolismo , Vagina/microbiología , Bacterias/metabolismo , Infecciones Estafilocócicas/microbiología , Glucosa/metabolismoRESUMEN
BACKGROUND: Clustering of sequences into operational taxonomic units (OTUs) and denoising methods are a mainstream stopgap to taxonomically classifying large numbers of 16S rRNA gene sequences. Environment-specific reference databases generally yield optimal taxonomic assignment. RESULTS: We developed SpeciateIT, a novel taxonomic classification tool which rapidly and accurately classifies individual amplicon sequences ( https://github.com/Ravel-Laboratory/speciateIT ). We also present vSpeciateDB, a custom reference database for the taxonomic classification of 16S rRNA gene amplicon sequences from vaginal microbiota. We show that SpeciateIT requires minimal computational resources relative to other algorithms and, when combined with vSpeciateDB, affords accurate species level classification in an environment-specific manner. CONCLUSIONS: Herein, two resources with new and practical importance are described. The novel classification algorithm, SpeciateIT, is based on 7th order Markov chain models and allows for fast and accurate per-sequence taxonomic assignments (as little as 10 min for 107 sequences). vSpeciateDB, a meticulously tailored reference database, stands as a vital and pragmatic contribution. Its significance lies in the superiority of this environment-specific database to provide more species-resolution over its universal counterparts.
Asunto(s)
Algoritmos , Microbiota , ARN Ribosómico 16S , Vagina , ARN Ribosómico 16S/genética , Microbiota/genética , Vagina/microbiología , Femenino , Humanos , Programas Informáticos , Bases de Datos GenéticasRESUMEN
Immunoglobulin (Ig) bacterial coating has been described in the gastrointestinal tract and linked to inflammatory bowel disease; however, little is known about Ig coating of vaginal bacteria and whether it plays a role in vaginal health including bacterial vaginosis (BV). We examined Ig coating in 18 women with symptomatic BV followed longitudinally before, 1 week, and 1 month after oral metronidazole treatment. Immunoglobulin A (IgA) and/or immunoglobulin G (IgG) coating of vaginal bacteria was assessed by flow cytometry, and Ig coated and uncoated bacteria were sorted and characterized using 16S rRNA sequencing. Despite higher levels of IgG compared to IgA in cervicovaginal fluid, the predominant Ig coating the bacteria was IgA. The majority of bacteria were uncoated at all visits, but IgA coating significantly increased after treatment for BV. Despite similar amounts of uncoated and IgA coated majority taxa ( >1% total) across all visits, there was preferential IgA coating of minority taxa (0.2%-1% total) associated with BV including Sneathia, several Prevotella species, and others. At the time of BV, we identified a principal component (PC) driven by proinflammatory mediators that correlated positively with an uncoated BV-associated bacterial community and negatively with an IgA coated protective Lactobacillus bacterial community. The preferential coating of BV-associated species, increase in coating following metronidazole treatment, and positive correlation between uncoated BV-associated species and inflammation suggest that coating may represent a host mechanism designed to limit bacterial diversity and reduce inflammatory responses. Elucidating the role of Ig coating in vaginal mucosal immunity may promote new strategies to prevent recurrent BV.
Asunto(s)
Vaginosis Bacteriana , Femenino , Humanos , Vaginosis Bacteriana/microbiología , Metronidazol/farmacología , Inmunoglobulina A , ARN Ribosómico 16S/genética , Vagina/microbiología , Bacterias/genética , Inmunoglobulina GRESUMEN
Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.
Asunto(s)
Endometriosis , Vesículas Extracelulares , Infertilidad Femenina , Motilidad Espermática , Espermatozoides , Vagina , Animales , Femenino , Humanos , Masculino , Ratones , Endometriosis/complicaciones , Fertilidad , Ratones Endogámicos BALB C , Espermatozoides/inmunología , Espermatozoides/fisiología , Linfocitos T Reguladores , Vagina/fisiopatología , Infertilidad Femenina/etiologíaRESUMEN
We aimed to investigate human papillomavirus (HPV) prevalence and genotype distribution and prognostic factors in vaginal cancer (VC). VC patients who received treatment between 1989 and 2020 were retrospectively reviewed. L1 general polymerase chain reaction (PCR) followed by HPV Blot (King Car, I-Lan, Taiwan) and E6 type-specific-PCR were performed for genotyping firstly. P16 and p53 immunohistochemistry staining was performed. Univariate and multivariate analyses identified predictors of clinical outcomes.79 VC patients were eligible for analysis. 73 patients (92.4%) were squamous cell carcinoma (SCC) and 6 (7.6%) as non-SCC. The median follow-up time was 134.3 months (range 0.9-273.4). Among nine initially HPV-negative cases, seven were identified as being positive through HPV16/18/45/52/58 whole-genome amplification followed by Sanger sequencing (WGASS). HPV DNA sequences were detected in 98.6% of SCC and 83.3% of non-SCC, respectively, with HPV16 (49.4%), HPV52 (15.2%) and HPV58 (8.9%) being predominant. Patients with paraaortic lymph node (LN) metastasis had a 5-year cancer-specific survival (CSS) rate of 0%. Multivariate analysis revealed that only p16 and stage were significantly correlated with prognosis. Variables with strong correlations (p16- and HPV-positivity, LN metastasis and stage), were included in models 2-5 alternatively. Stage III/IV (hazard ratio [HR] = 3.64-4.56) and LN metastasis (HR = 2.81-3.44) were significant negative predictors of CSS, whereas p16-positivity (HR = 0.29-0.32) and HPV-positivity (HR = 0.14) were related to better prognosis. In conclusion, 97.5% of VCs were HPV-positive with WGASS. Stage III/IV and LN metastasis were significant negative predictors, whereas p16- and HPV-positivity were significantly associated with better prognosis.
Asunto(s)
Genotipo , Infecciones por Papillomavirus , Neoplasias Vaginales , Humanos , Femenino , Persona de Mediana Edad , Pronóstico , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/complicaciones , Anciano , Estudios Retrospectivos , Neoplasias Vaginales/virología , Neoplasias Vaginales/epidemiología , Neoplasias Vaginales/patología , Neoplasias Vaginales/genética , Adulto , Prevalencia , Carcinoma de Células Escamosas/virología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/epidemiología , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Anciano de 80 o más Años , ADN Viral/genética , Metástasis Linfática , Virus del Papiloma HumanoRESUMEN
High-risk human papillomavirus (hrHPV) is the cause of virtually all cervical cancers, most vaginal and anal cancers, and some vulvar cancer cases. With HPV testing becoming the primary screening method for cervical cancer, understanding the link between cervical hrHPV infection and the risk of other anogenital cancers is crucial. We assessed the risk of vulvar, vaginal and anal cancer and precancer (VIN2+, VaIN2+ and AIN2+) in a prospective cohort study including 455,349 women who underwent cervical hrHPV testing in Denmark from 2005 to 2020. We employed Cox proportional hazard models, adjusting for age, calendar year and HPV vaccination status, and estimated hazard ratios (HRs) and 95% confidence intervals (CI). We used the Aalen Johansen estimator to calculate the absolute risks of VIN2+, VaIN2+ and AIN2+. In total, 15% of the women were hrHPV positive at baseline. A positive cervical hrHPV test was associated with increased incidence of vulvar, vaginal and anal squamous cell carcinoma (SCC). Five-year risk estimates of VIN2+, VaIN2+ and AIN2+ among hrHPV-positive women (0.45%, 0.14% and 0.12%) were higher than among hrHPV-negative women (0.14%, 0.01% and 0.05%). Particularly high risk was observed among the hrHPV-positive women of the oldest age, with a history of anogenital precancer and those not HPV vaccinated. In conclusion, our study confirms the association between cervical hrHPV infection and non-cervical anogenital precancers and cancers. Currently, no established risk threshold or guidelines for follow-up. As HPV testing becomes the primary method for cervical cancer screening, future data will help define high-risk groups and acceptable risk thresholds.