RESUMEN
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
RESUMEN
Background and Objective: The ventral attentional network (VAN) can provide quantitative information on cognitive problems in patients with major depressive disorder (MDD). Nevertheless, little is known about network homogeneity (NH) changes in the VAN of these patients. The aim of this study was to examine the NH values in the VAN by independent component analysis (ICA) and compare the NH values between MDD patients and the normal controls (NCs). Methods: Attentional network test and resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 73 patients, and 70 NCs matched by gender, age, and education years. ICA and NH were employed to evaluate the data. Moreover, the NH values were compared, and Spearman's rank correlation analysis was used to assess the correlations with the executive control reaction time (ECRT). Results: Our results showed that the first-episode, treatment-naive MDD patients had decreased NH in the right precuneus (PCu) and abnormal ECRT compared with NCs. However, no significant correlation was found between the NH values and measured clinical variables. Conclusion: Our results highlight the potential importance of VAN in the pathophysiology of cognitive problems in MDD, thus offering new directions for future research on MDD.
RESUMEN
In visual search, salient yet task-irrelevant distractors in the stimulus array interfere with target selection. This is due to the unwanted shift of attention towards the salient stimulus-the so-called attentional capture effect, which delays deployment of attention onto the target. Although powerful and automatic, attentional capture by a salient distractor is nonetheless antagonized by distractor-filtering mechanisms and is further modulated by cross-trial contingencies: The distractor cost is typically more robust when no distraction has been experienced in the immediate past, compared to when a distractor was present on the immediately preceding trial. Here, we used transcranial magnetic stimulation (TMS) to shed light on the causal role of two crucial nodes of the ventral attention network, namely the Temporo-Parietal Junction (TPJ) and the Middle Frontal Gyrus (MFG), in the exogenous control of attention (i.e., attentional capture) and its history-dependent modulation. Participants were asked to discriminate the direction of a target arrow while ignoring a task-irrelevant salient distractor, when present. Immediately after display onset, 10 Hz triple-pulse TMS was delivered either to TPJ or MFG on the right hemisphere. Results demonstrated that stimulation of right TPJ-but not of right MFG, strongly modulated attentional capture as a function of the type of previous trial, by somewhat enhancing the distractor-related cost when the preceding trial was a distractor-absent trial and significantly decreasing the cost when the preceding trial was a distractor-present trial. These findings indicate that TMS of right TPJ exacerbates the effect of the recent history, likely reflecting enhanced updating of the predictive model that dynamically governs proactive distractor-filtering mechanisms. More generally, the results attest to a role of TPJ in mediating the history-dependent modulation of attentional capture.
Asunto(s)
Lóbulo Frontal , Estimulación Magnética Transcraneal , Humanos , Estimulación Luminosa , Tiempo de ReacciónRESUMEN
A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic-phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits.
RESUMEN
INTRODUCTION: We used an affective prime task composed of emotional (happy, angry, and neutral) prime faces and target words with either positive or negative valence. By asking subjects to attend to either the faces' emotional expression or to the glasses' shape, we assessed whether angry facial expressions were processed when they were unattended and task-irrelevant. METHODS: We conducted a distributed source analysis on the corresponding event-related potentials focused on the early activity of face processing and attention networks' related areas. We also evaluated the magnitude of the affective priming effect. RESULTS: We observed a reduction of occipitotemporal areas' (BA37) activation to unattended compared to attended faces and a modulation of primary visual areas' activity lateralization. The latter was more right lateralized for attended than for unattended faces, and emotional faces were more right lateralized than neutral ones only in the former condition. Affective priming disappeared when emotional expressions of prime faces were ignored. Moreover, an increased activation in the right temporo-parietal junction (TPJ), but not in the intraparietal sulcus, was observed only for unattended angry facial expressions at â¼170 ms after face presentation. CONCLUSION: We suggest that attentional resources affect the early processing in visual and occipito-temporal areas, irrespective of the faces' threatening content. The disappearance of the affective priming effect suggests that when subjects were asked to focus on glasses' shape, attentional resources were not available to process the facial emotional expression, even though emotion-relevant and emotion-irrelevant features of the face were presented in the same position. On the other hand, unattended angry faces evoked a pre-attentive TPJ activity, which most likely represents a bottom-up trigger that signals their high behavioral relevance, although it is unrelated to task demands.
RESUMEN
ACCOUNTS OF THE EFFECT OF EMOTIONAL INFORMATION ON BEHAVIORAL RESPONSE AND CURRENT MODELS OF EMOTION REGULATION ARE BASED ON TWO OPPOSED BUT INTERACTING PROCESSES: automatic bottom-up processes (triggered by emotionally arousing stimuli) and top-down control processes (mapped to prefrontal cortical areas). Data on the existence of a third attentional network operating without recourse to limited-capacity processes but influencing response raise the issue of how it is integrated in emotion regulation. We summarize here data from attention to emotion, voluntary emotion regulation, and on the origin of biases against negative content suggesting that the ventral network is modulated by exposure to emotional stimuli when the task does not constrain the handling of emotional content. In the parietal lobes, preferential activation of ventral areas associated with "bottom-up" attention by ventral network theorists is strongest in studies of cognitive reappraisal. In conditions when no explicit instruction is given to change one's response to emotional stimuli, control of emotionally arousing stimuli is observed without concomitant activation of the dorsal attentional network, replaced by a shift of activation toward ventral areas. In contrast, in studies where emotional stimuli are placed in the role of distracter, the observed deactivation of these ventral semantic association areas is consistent with the existence of proactive control on the role emotional representations are allowed to take in generating response. It is here argued that attentional orienting mechanisms located in the ventral network constitute an intermediate kind of process, with features only partially in common with effortful and automatic processes, which plays an important role in handling emotion by conveying the influence of semantic networks, with which the ventral network is co-localized. Current neuroimaging work in emotion regulation has neglected this system by focusing on a bottom-up/top-down dichotomy of attentional control.