Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.163.505
Filtrar
Más filtros

Colección Odontología Uruguay
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 427-53, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38360547

RESUMEN

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.


Asunto(s)
Proteína AIRE , Autoinmunidad , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Timo/inmunología , Timo/metabolismo , Mutación , Tolerancia Inmunológica , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo
2.
Annu Rev Immunol ; 42(1): 455-488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38360546

RESUMEN

Ten-eleven translocation (TET) proteins are iron-dependent and α-ketoglutarate-dependent dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. TET proteins are recruited by transcription factors and by RNA polymerase II to modify 5mC at enhancers and gene bodies, thereby regulating gene expression during development, cell lineage specification, and cell activation. It is not yet clear, however, how the established biochemical activities of TET enzymes in oxidizing 5mC and mediating DNA demethylation relate to the known association of TET deficiency with inflammation, clonal hematopoiesis, and cancer. There are hints that the ability of TET deficiency to promote cell proliferation in a signal-dependent manner may be harnessed for cancer immunotherapy. In this review, we draw upon recent findings in cells of the immune system to illustrate established as well as emerging ideas of how TET proteins influence cellular function.


Asunto(s)
Desmetilación del ADN , Dioxigenasas , Inmunoterapia , Inflamación , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Inflamación/metabolismo , Inflamación/inmunología , Inmunoterapia/métodos , Dioxigenasas/metabolismo , Sistema Inmunológico/metabolismo , Sistema Inmunológico/inmunología , Epigénesis Genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética
3.
Annu Rev Immunol ; 42(1): 235-258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38271641

RESUMEN

The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Diferenciación Celular , Linaje de la Célula , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Ratones , Factores de Transcripción/metabolismo , Transcriptoma , Multiómica
4.
Annu Rev Immunol ; 41: 39-71, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36525691

RESUMEN

Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.


Asunto(s)
Enfermedades del Sistema Inmune , Inmunidad , Fenotipo , Animales , Humanos , Ratones , Inmunidad/genética , Enfermedades del Sistema Inmune/genética
5.
Annu Rev Immunol ; 40: 271-294, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35080919

RESUMEN

Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.


Asunto(s)
Virosis , Virus , Animales , Evolución Biológica , Humanos , Mutación , Proteínas Virales , Virosis/genética , Virus/genética
6.
Annu Rev Immunol ; 40: 387-411, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35119910

RESUMEN

Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry.


Asunto(s)
Cromatina , Redes Reguladoras de Genes , Animales , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/genética
7.
Annu Rev Immunol ; 40: 95-119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471838

RESUMEN

A high diversity of αß T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.


Asunto(s)
Señales (Psicología) , Receptores de Antígenos de Linfocitos T , Animales , Humanos , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Linfocitos T Reguladores
8.
Annu Rev Immunol ; 39: 279-311, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33544645

RESUMEN

The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.


Asunto(s)
Inmunidad Innata , Inflamación , Animales , Epigénesis Genética , Humanos , Inmunidad Innata/genética , Inflamación/genética
9.
Annu Rev Immunol ; 39: 481-509, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33577347

RESUMEN

Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.


Asunto(s)
MicroARNs , Estabilidad del ARN , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
Annu Rev Immunol ; 39: 345-368, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33556247

RESUMEN

For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Memoria Inmunológica , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Humanos , Memoria Inmunológica/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Transcripción Genética
11.
Annu Rev Immunol ; 39: 227-249, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33534603

RESUMEN

Primary immunodeficiency diseases (PIDs) are a rapidly growing, heterogeneous group of genetically determined diseases characterized by defects in the immune system. While individually rare, collectively PIDs affect between 1/1,000 and 1/5,000 people worldwide. The clinical manifestations of PIDs vary from susceptibility to infections to autoimmunity and bone marrow failure. Our understanding of the human immune response has advanced by investigation and discovery of genetic mechanisms of PIDs. Studying patients with isolated genetic variants in proteins that participate in complex signaling pathways has led to an enhanced understanding of host response to infection, and mechanisms of autoimmunity and autoinflammation. Identifying genetic mechanisms of PIDs not only furthers immunological knowledge but also benefits patients by dictating targeted therapies or hematopoietic stem cell transplantation. Here, we highlight several of these areas in the field of primary immunodeficiency, with a focus on the most recent advances.


Asunto(s)
Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Animales , Autoinmunidad/genética , Humanos , Sistema Inmunológico , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia
12.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32017655

RESUMEN

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Asunto(s)
Caspasas/metabolismo , Muerte Celular , Inflamación/etiología , Inflamación/metabolismo , Proteínas de Neoplasias/genética , Piroptosis/genética , Animales , Apoptosis , Biomarcadores , Caspasas/genética , Muerte Celular/genética , Susceptibilidad a Enfermedades , Activación Enzimática , Humanos , Inflamación/patología , Proteínas de Neoplasias/metabolismo , Transducción de Señal
13.
Annu Rev Immunol ; 38: 397-419, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31990620

RESUMEN

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Linfopoyesis , Linfocitos T/inmunología , Linfocitos T/metabolismo , Acetilación , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Histonas , Humanos , Linfopoyesis/genética , Linfopoyesis/inmunología , Metilación , Procesamiento Proteico-Postraduccional , Linfocitos T/citología , Linfocitos T/enzimología , Ubiquitinación
14.
Annu Rev Immunol ; 38: 455-485, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32004099

RESUMEN

Immune cells use a variety of membrane-disrupting proteins [complement, perforin, perforin-2, granulysin, gasdermins, mixed lineage kinase domain-like pseudokinase (MLKL)] to induce different kinds of death of microbes and host cells, some of which cause inflammation. After activation by proteolytic cleavage or phosphorylation, these proteins oligomerize, bind to membrane lipids, and disrupt membrane integrity. These membrane disruptors play a critical role in both innate and adaptive immunity. Here we review our current knowledge of the functions, specificity, activation, and regulation of membrane-disrupting immune proteins and what is known about the mechanisms behind membrane damage, the structure of the pores they form, how the cells expressing these lethal proteins are protected, and how cells targeted for destruction can sometimes escape death by repairing membrane damage.


Asunto(s)
Citotoxicidad Inmunológica , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Apoptosis/genética , Apoptosis/inmunología , Biomarcadores , Membrana Celular/inmunología , Membrana Celular/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Regulación de la Expresión Génica , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Metabolismo de los Lípidos , Necroptosis/genética , Necroptosis/inmunología , Necrosis/genética , Necrosis/inmunología , Necrosis/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Relación Estructura-Actividad
15.
Annu Rev Immunol ; 38: 365-395, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31986070

RESUMEN

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.


Asunto(s)
Susceptibilidad a Enfermedades , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunomodulación , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Transducción de Señal , Animales , Biomarcadores , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo
16.
Annu Rev Immunol ; 38: 421-453, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31990619

RESUMEN

Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.


Asunto(s)
Diferenciación Celular/inmunología , Linfopoyesis/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Biomarcadores , Diferenciación Celular/genética , Supresión Clonal , Selección Clonal Mediada por Antígenos , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Linfopoyesis/genética , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/citología , Timo/citología , Timo/inmunología , Timo/metabolismo
17.
Annu Rev Immunol ; 38: 673-703, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32340576

RESUMEN

Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Interacciones Huésped-Patógeno/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Ensayos Clínicos como Asunto , Manejo de la Enfermedad , Variación Genética , Infecciones por VIH/virología , VIH-1/genética , Humanos , Inmunización Pasiva , ARN Viral , Relación Estructura-Actividad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
18.
Annu Rev Immunol ; 38: 341-363, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31961750

RESUMEN

Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.


Asunto(s)
Hipoxia/inmunología , Hipoxia/metabolismo , Inmunidad Innata , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Metabolismo Energético , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Hipoxia/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Inmunomodulación , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Transducción de Señal
19.
Annu Rev Immunol ; 38: 487-510, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32017636

RESUMEN

Nonclonal innate immune responses mediated by germ line-encoded receptors, such as Toll-like receptors or natural killer receptors, are commonly contrasted with diverse, clonotypic adaptive responses of lymphocyte antigen receptors generated by somatic recombination. However, the Variable (V) regions of antigen receptors include germ line-encoded motifs unaltered by somatic recombination, and theoretically available to mediate nonclonal, innate responses, that are independent of or largely override clonotypic responses. Recent evidence demonstrates that such responses exist, underpinning the associations of particular γδ T cell receptors (TCRs) with specific anatomical sites. Thus, TCRγδ can make innate and adaptive responses with distinct functional outcomes. Given that αß T cells and B cells can also make nonclonal responses, we consider that innate responses of antigen receptor V-regions may be more widespread, for example, inducing states of preparedness from which adaptive clones are better selected. We likewise consider that potent, nonclonal T cell responses to microbial superantigens may reflect subversion of physiologic innate responses of TCRα/ß chains.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Receptores de Antígenos/metabolismo , Animales , Interacciones Huésped-Patógeno/inmunología , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Antígenos/química , Receptores de Antígenos/genética , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
20.
Annu Rev Immunol ; 38: 229-247, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31928469

RESUMEN

Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.


Asunto(s)
Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Inmunidad Adaptativa , Animales , Biomarcadores , Diferenciación Celular/inmunología , Interacciones Huésped-Patógeno , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/inmunología , Células Progenitoras Linfoides/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA