RESUMEN
Caffeine is a widely consumed psychostimulant with several mechanisms of action and various positive and negative effects on organisms. Caffeine undergoes extensive hepatic metabolism to form main metabolites such as theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid. However, interspecies diversities have been observed in caffeine metabolism. In the present study, we developed a sensitive and straightforward ultra-high-performance liquid chromatography-tandem mass spectrometry method to quantify caffeine and its primary metabolites, namely theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid in rat plasma. After extraction of analytes using micro solid-phase extraction plate, analytes were separated by elution gradient on the Acquity UPLC HSS T3 (50 × 2.1 mm, 1.8 µm) column over 4 min. The detection was done on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring modes using a positive electrospray ionization interface. The method was successfully validated according to the European Medicine Agency guideline over a concentration range of 5-1500 ng/ml for caffeine, 5-1200 ng/mL for theobromine, and 2.5-1200 ng/mL for theophylline, paraxanthine, and 1,3,7-trimethyluric acid. The developed method was applied to analyze samples from animal experiments focusing on the metabolism and effects of caffeine and caffeine-containing beverages.
Asunto(s)
Cafeína/sangre , Teobromina/sangre , Teofilina/sangre , Animales , Cafeína/metabolismo , Cromatografía Líquida de Alta Presión , Masculino , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem , Teobromina/metabolismo , Teofilina/metabolismo , Ácido Úrico/análogos & derivadosRESUMEN
Jiaocheng kucha is the first reported tea germplasm resource which contains theacrine founded in Fujian Province. Currently, the anabolic mechanism of theacrine within tea leaves is clear, but there are few studies focused on its flowers. In order to further explore the mechanism of theacrine synthesis and related genes in flowers, current study applied Jiaocheng kucha flowers (JC) as test materials and Fuding Dabaicha flowers (FD) as control materials to make transcriptome sequencing, and determination of purine alkaloid content in three different developmental periods (flower bud stage, whitening stage and full opening stage). The results showed that the flower in all stages of JC contained theacrine. The theacrine in the flower bud stage was significantly higher than in the other stages. The differentially expressed genes (DEGs) at three different developmental stages were screened from the transcriptome data, and were in a total of 5642, 8640 and 8465. These DEGs related to the synthesis of theacrine were primarily annotated to the pathways of purine alkaloids. Among them, the number of DEGs in xanthine synthesis pathway was the largest and upregulated in JC, while it was the smallest in caffeine synthesis pathway and downregulated in JC. Further weighted gene co-expression network (WGCNA) indicated that ADSL (CsTGY03G0002327), ADSL (CsTGY09G0001824) and UAZ (CsTGY06G0002694) may be a hub gene for the regulation of theacrine metabolism in JC. Our results will contribute to the identification of candidate genes related to the synthesis of theacrine in tea flowers, and explore the molecular mechanism of theacrine synthesis in JC at different developmental stages.
Asunto(s)
Camellia sinensis/genética , Flores/genética , Ácido Úrico/análogos & derivados , Alcaloides/metabolismo , Vías Biosintéticas , Cafeína/metabolismo , Camellia sinensis/metabolismo , China , Flores/química , Flores/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Té/metabolismo , Transcriptoma/genética , Ácido Úrico/metabolismo , Xantinas/metabolismoRESUMEN
In this work, we have investigated the binding conformations of the substrate in the active site of 5-HIU hydrolase kpHIUH and its catalytic hydrolysis mechanism. Docking calculations revealed that the substrate adopts a conformation in the active site with its molecular plane laying parallel to the binding interface of the protein dimer of kpHIUH, in which His7 and His92 are located adjacent to the hydrolysis site C6 and have hydrogen bond interactions with the lytic water. Based on this binding conformation, density functional theory calculations indicated that the optimal catalytic mechanism consists of two stages: (1) the lytic water molecule is deprotonated by His92 and carries out nucleophilic attack on C6=O of 5-HIU, resulting in an oxyanion intermediate; (2) by accepting a proton transferred from His92, C6-N5 bond is cleaved to completes the catalytic cycle. The roles of His7, His92, Ser108 and Arg49 in the catalytic reaction were revealed and discussed in detail.
Asunto(s)
Proteínas Bacterianas/química , Hidrolasas/química , Klebsiella pneumoniae/enzimología , Modelos Moleculares , Catálisis , Dominio Catalítico , Ácido Úrico/análogos & derivados , Ácido Úrico/químicaRESUMEN
Caffeine has been reported to induce anti-tumor immunity for attenuating breast cancer by blocking the adenosine 2A receptor. Molecular modeling showed that theacrine, a purine alkaloid structurally similar to caffeine, might be an antagonist of the adenosine 2A receptor equivalent to or more effective than caffeine. Theacrine was further demonstrated to be an effective antagonist of the adenosine 2A receptor as its concurrent supplementation significantly reduced the elevation of AMPK phosphorylation level in MCF-7 human breast cells induced by CGS21680, an agonist of adenosine 2A receptors. In an animal model, the development of mammary carcinoma induced by 7,12-Dimethylbenz[a]anthracene in Sprague-Dawley rats could be attenuated by daily supplement of theacrine of 50 or 100 mg/kg body weight. Both expression levels of cleaved-caspase-3/pro-caspase-3 and granzyme B in tumor tissues were significantly elevated when theacrine was supplemented, indicating the induction of programmed cell death in tumor cells might be involved in the attenuation of mammary carcinoma. Similar to the caffeine, significant elevation of interferon-γ and tumor necrosis factor-α was observed in the serum and tumor tissues of rats after the theacrine supplement of 50 mg/kg body weight. Taken together, theacrine is an effective antagonist of adenosine 2A receptors and possesses great potential to be used to attenuate breast cancer.
Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Neoplasias Mamarias Experimentales , Proteínas de Neoplasias , Receptor de Adenosina A2A/metabolismo , Ácido Úrico/análogos & derivados , Animales , Femenino , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Ratas , Ratas Sprague-Dawley , Ácido Úrico/farmacologíaRESUMEN
Rheumatoid arthritis is a chronic and systemic autoimmune disease, which affects approximately 1% of the adult population worldwide. The present study investigated the therapeutic effect of theacrine (TC) on arthritis and its mechanisms in Freund's incomplete adjuvant (FIA)-induced SD rats. Rats were randomly divided into 5 groups: i) healthy control; ii) model; iii) positive control with methotrexate (MTX); iv) treatment with 12.5 mg/kg TC; and v) treatment with 25.0 mg/kg TC. The apparent scores, including changes in body weights, degree of paw swelling and arthritis indicators, were analyzed to evaluate the anti-chronic inflammatory effect of TC. The levels of interleukin (IL)-6 and transforming growth factor-ß (TGF-ß) in serum were measured by enzyme-linked immunosorbent assay. The protein and RNA expression levels of the critical factors in rats were measured to elucidate the mechanisms responsible for chronic inflammation and to verify molecular indexes of chronic inflammatory conditions. TC notably suppressed the severity of FIA-induced rat by attenuating the apparent scores, animal weight and inflammatory indexes in the 25 mg/kg TC group compared with the FIA rat model. Furthermore, TC significantly decreased the levels of IL-6 and increased the levels of TGF-ß. Histopathological examinations indicated that TC rescued the synovial hyperplasia and inflammatory cell infiltration in joint tissues. In addition, TC enhanced TGF-ß-mediated shifts in inflammatory marker expression in joint tissue. Overall, the present study demonstrated that TC exerted a superior anti-arthritic effect via the suppression of IL-6 and the activation of TGF-ß by the TGF-ß/SMAD pathway.
Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Proteínas Smad/inmunología , Factor de Crecimiento Transformador beta/inmunología , Ácido Úrico/análogos & derivados , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Enfermedad Crónica , Adyuvante de Freund , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Articulaciones/efectos de los fármacos , Articulaciones/inmunología , Articulaciones/patología , Lípidos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas Smad/análisis , Factor de Crecimiento Transformador beta/análisis , Ácido Úrico/uso terapéuticoRESUMEN
Chemically modified short peptide nucleic acids (PNAs) recognize RNA duplexes under near physiological conditions by major-groove PNA·RNA-RNA triplex formation and show great promise for the development of RNA-targeting probes and therapeutics. Thymine (T) and uracil (U) are often incorporated into PNAs to recognize A-U pairs through major-groove T·A-U and U·A-U base triple formation. Incorporation of a modified nucleobase, 2-thiouracil (s2U), into triplex-forming oligonucleotides stabilizes both DNA and RNA triplexes. Thiolation of uracil causes a decrease in the dehydration energy penalty for triplex formation as well as a decrease in the pKa of the N3 atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions, similar to the previously reported thiolation effect of pseudoisocytosine (J to L substitution). Here, we incorporated s2U into short PNAs, followed by binding studies of a series of s2U-modified PNAs. We demonstrated by nondenaturing polyacrylamide gel electrophoresis and thermal melting experiments that s2U and L incorporated into dsRNA-binding PNAs (dbPNAs) enhance the recognition of A-U and G-C pairs, respectively, in RNA duplexes in a position-independent manner, with no appreciable binding to the DNA duplex. Combining s2U and L modifications in dbPNAs facilitates enhanced recognition of dsRNAs and maintains selective binding to dsRNAs over ssRNAs. We further demonstrated through a cell-free assay the application of the s2U- and L-modified dbPNAs (8-mer, with a molecular mass of â¼2.3 kDa) in the inhibition of the pre-microRNA-198 maturation in a substrate-specific manner. Thus, s2U-modified dbPNAs may be generally useful for the enhanced and selective recognition of RNA duplexes and for the regulation of RNA functions.
Asunto(s)
Secuencias Invertidas Repetidas , MicroARNs/genética , Ácidos Nucleicos de Péptidos/metabolismo , Ácido Úrico/análogos & derivados , Secuencia de Bases , Ácidos Nucleicos de Péptidos/química , Ácido Úrico/metabolismoRESUMEN
PURPOSE: Cytochrome P450 (CYP) 3A plays an important role in the metabolism of many clinically used drugs and exhibits substantial between-subject variability (BSV) in activity. Current methods to assess variability in CYP3A activity have limitations and there remains a need for a minimally invasive clinically translatable strategy to define CYP3A activity. The purpose of this study was to evaluate the potential for a caffeine metabolic ratio to describe variability in CYP3A activity. METHODS: The metabolic ratio 1,3,7-trimethyluric acid (TMU) to caffeine was evaluated as a biomarker to describe variability in CYP3A activity in a cohort (n = 28) of healthy 21 to 35-year-old males. Midazolam, caffeine, and TMU concentrations were assessed at baseline and following dosing of rifampicin (300 mg daily) for 7 days. RESULTS: At baseline, correlation coefficients for the relationship between apparent oral midazolam clearance (CL/F) with caffeine/TMU ratio measured at 3, 4, and 6 h post dose were 0.82, 0.79, and 0.65, respectively. The strength of correlations was retained post rifampicin dosing; 0.72, 0.87, and 0.82 for the ratios at 3, 4, and 6 h, respectively. Weaker correlations were observed between the change in midazolam CL/F and change in caffeine/TMU ratio post/pre-rifampicin dosing. CONCLUSION: BSV in CYP3A activity was well described by caffeine/TMU ratios pre- and post-induction. The caffeine/TMU ratio may be a convenient tool to assess BSV in CYP3A activity, but assessment of caffeine/TMU ratio alone is unlikely to account for all sources of variability in CYP3A activity.
Asunto(s)
Cafeína/sangre , Citocromo P-450 CYP3A/metabolismo , Ácido Úrico/análogos & derivados , Adulto , Biomarcadores/sangre , Cafeína/farmacocinética , Citocromo P-450 CYP3A/genética , Inductores del Citocromo P-450 CYP3A/sangre , Inductores del Citocromo P-450 CYP3A/farmacocinética , Dieta , Genotipo , Humanos , Masculino , Midazolam/sangre , Midazolam/farmacocinética , Fenotipo , Grupos Raciales/genética , Rifampin/sangre , Rifampin/farmacocinética , Ácido Úrico/sangre , Adulto JovenRESUMEN
Age is known as one of influencing factor for theophylline (TP)-metabolizing capacity. In a previous our study, the ratio of TP and its major metabolite 1,3-dimethyluric acid (DMU) in serum (DMU/TP) is a useful index to estimate TP-metabolizing capacity, and this value markedly increased by influencing factor, such as the history of smoking. However, it is unknown whether DMU/TP values in serum reflect age-associated changes of TP-metabolizing capacity. In this study, the effect of age on the DMU/TP values in serum were investigated using mice of different age due to the limited blood sampling in human. The concentrations of TP and its metabolites in mouse serum were simultaneously measured using HPLC. As observed in human serum, serum TP concentrations were closely correlated with DMU concentration in mice, which indicates that the DMU/TP ratio is a good indicator of TP metabolic ability in mice. When TP was administered subcutaneously in 2-28-week-old mice, age-associated changes in the DMU/TP ratio in mice were observed. In conclusion, age-associated changes in TP-metabolizing capacity can be estimated by the DMU/TP ratio in serum.
Asunto(s)
Envejecimiento/sangre , Teofilina/sangre , Ácido Úrico/análogos & derivados , Envejecimiento/metabolismo , Animales , Masculino , Ratones Endogámicos ICR , Teofilina/farmacocinética , Ácido Úrico/sangreRESUMEN
Theacrine, a purine alkaloid structurally similar to caffeine, has recently become of interest as a potential therapeutic compound. Here, we investigated the antimetastatic potential of theacrine on human breast cancer MDA-MB-231 cells. We observed that theacrine can reverse epithelial-to-mesenchymal transition (EMT), which resulted in a decrease in the levels of mesenchymal markers (Fibronectin, Vimentin, N-cadherin, Twist, and Snail) and an increase in the levels of epithelial markers (Occludin and E-cadherin) in the cells. Additionally, theacrine attenuates TGF-ß-induced EMT, cell adhesion, migration, and invasion in MDA-MB-231 cells. Overall, our results suggest that theacrine may inhibit the breast cancer cell metastasis by reversing the EMT process.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ácido Úrico/análogos & derivados , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Fibronectinas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Proteína 1 Relacionada con Twist/metabolismo , Ácido Úrico/farmacología , Vimentina/metabolismoRESUMEN
Urate hydroperoxide is a product of the oxidation of uric acid by inflammatory heme peroxidases. The formation of urate hydroperoxide might be a key event in vascular inflammation, where there is large amount of uric acid and inflammatory peroxidases. Urate hydroperoxide oxidizes glutathione and sulfur-containing amino acids and is expected to react fast toward reactive thiols from peroxiredoxins (Prxs). The kinetics for the oxidation of the cytosolic 2-Cys Prx1 and Prx2 revealed that urate hydroperoxide oxidizes these enzymes at rates comparable with hydrogen peroxide. The second-order rate constants of these reactions were 4.9 × 105 and 2.3 × 106 m-1 s-1 for Prx1 and Prx2, respectively. Kinetic and simulation data suggest that the oxidation of Prx2 by urate hydroperoxide occurs by a three-step mechanism, where the peroxide reversibly associates with the enzyme; then it oxidizes the peroxidatic cysteine, and finally, the rate-limiting disulfide bond is formed. Of relevance, the disulfide bond formation was much slower in Prx2 (k3 = 0.31 s-1) than Prx1 (k3 = 14.9 s-1). In addition, Prx2 was more sensitive than Prx1 to hyperoxidation caused by both urate hydroperoxide and hydrogen peroxide. Urate hydroperoxide oxidized Prx2 from intact erythrocytes to the same extent as hydrogen peroxide. Therefore, Prx1 and Prx2 are likely targets of urate hydroperoxide in cells. Oxidation of Prxs by urate hydroperoxide might affect cell function and be partially responsible for the pro-oxidant and pro-inflammatory effects of uric acid.
Asunto(s)
Eritrocitos/enzimología , Peróxidos/química , Peroxirredoxinas/química , Ácido Úrico/análogos & derivados , Disulfuros/química , Disulfuros/metabolismo , Humanos , Cinética , Oxidación-Reducción , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Ácido Úrico/química , Ácido Úrico/metabolismoRESUMEN
Transthyretin (TTR), a plasma thyroid hormone distributor protein (THDP), emerged from 5-hydroxyisourate hydrolase (HIUHase), an enzyme involved in urate metabolism, by gene duplication at a stage of chordate evolution. Comparison of amino acid sequences revealed the presence of two His-rich segments in the primitive TTRs. Using several HIUHase and TTR mutants, we investigated 5-hydroxyisourate (HIU) hydrolysis activity and thyroid hormone (TH) binding activity to elucidate how a novel function as a THDP arose. Lancelet HIUHase was found to have higher enzyme activity than trout HIUHase. Two amino acid substitutions, R54E/Y119T, at the active sites of HIUHase, exerted weak [125I]-3,3',5-triiodo-L-thyronine ([125I]T3) binding activity with a concomitant loss of HIU hydrolysis activity. Addition of 3×His (3×H) to the N-terminal end weakened HIU hydrolysis activity of both lancelet and trout HIUHases, whereas it enhanced T3-binding activity of HIUHase R54E/Y119T. Trout HIUHase 3×H R54E/Y119T had higher [125I]T3-binding activity than that of lancelet HIUHase 3×H R54E/Y119T, with a Kd of 143 nM, and displayed metal dependency and no TH binding specificity. Deletion of the N-terminal His-rich segment from lamprey TTR decreased T3-binding activity, while addition of 3×H to trout TTR increased T3-binding activity, while maintaining TH binding specificity. Our results suggest that functional trade-offs of HIU hydrolysis activity with TH binding activity might have sequentially occurred before and after gene duplication, and that TH binding specificity and high-affinity sites may have been acquired later in the course of TTR evolution.
Asunto(s)
Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Prealbúmina/genética , Amidohidrolasas/fisiología , Secuencia de Aminoácidos/genética , Animales , Evolución Biológica , Cordados/genética , Evolución Molecular , Duplicación de Gen , Hidrolasas/metabolismo , Hidrólisis , Lampreas/genética , Anfioxos/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Filogenia , Prealbúmina/metabolismo , Unión Proteica , Ácido Úrico/análogos & derivados , Ácido Úrico/metabolismoRESUMEN
CD4+ T cells differentiate into distinct effector subsets upon antigenic stimulation. Cytokines, and micro-environmental factors present during T-cell priming, direct differentiation of naïve CD4+ T cells into pro-inflammatory Th1 and Th17 cells. From extensive screening of 2,4,5-trimethylpyridin-3-ol derivatives with various functional groups at C(6)-position, BJ-2266, a 6-thioureido-derivative, showed potent inhibitory activity on in vitro T helper (Th)-cell differentiation. This compound inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells that were activated by T-cell receptor (TCR) engagement. We assessed the inhibitory effect of BJ-2266 in experimental autoimmune encephalomyelitis (EAE). Our results suggest that BJ-2266 treatment significantly suppresses EAE disease progression with reduced generation of Th1 and Th17 cells. Notably, Th-cell differentiation was significantly suppressed by BJ-2266 treatment with no effect on apoptosis, activation and proliferation of activated T cells. Furthermore, adoptive transfer of BJ-2266 treated MOG-reactive Th1 and Th17 cells led to a lower EAE disease score and better clinical recovery from EAE. The underlying mechanism of BJ-2266 effect involved the inhibition of JAK/STAT phosphorylation that is critical for Th-cell differentiation. We conclude that BJ-2266 regulates the JAK/STAT pathway in response to cytokine signals and subsequently suppresses the differentiation of Th-cell responses.
Asunto(s)
Aminopiridinas/uso terapéutico , Benzamidas/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Células TH1/efectos de los fármacos , Células Th17/efectos de los fármacos , Tiourea/análogos & derivados , Ácido Úrico/análogos & derivados , Animales , Benzamidas/análisis , Diferenciación Celular , Células Cultivadas , Humanos , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Quinasas Janus/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Células TH1/inmunología , Células Th17/inmunología , Tiourea/uso terapéutico , Ácido Úrico/química , Ácido Úrico/uso terapéuticoRESUMEN
BACKGROUND AND OBJECTIVES: N-acetyltransferase 2 (NAT2) metabolize several drugs including isoniazid. We investigated the effect of genotype, geographical difference, and smoking habit on NAT2 phenotype in Ethiopians. METHODS: Genotyping for NAT2 191G > A, 341 T > C, 590G > A, and 857G > A was performed in 163 unrelated healthy Ethiopians (85 living in Ethiopia and 78 living in Sweden). The NAT2 phenotype was determined using caffeine as a probe and log AFMU/(AFMU + 1X + 1 U) urinary metabolic ratio (MR) as an index. RESULTS: The frequencies of NAT2*4, *5, *6, *7, and *14 haplotypes were 14.1, 48.5, 30.1, 5.5, and 1.8%, respectively. The frequencies of rapid (NAT2*4/*4), intermediate (heterozygous *4), and slow (no *4 allele) acetylator genotypes were 1.8, 24.6, and 73.6%, respectively. The distribution NAT2 MR was bimodal with 70% being phenotypically slow acetylators. NAT2 genotype (p < 0.0001) and country of residence (p = 0.004) independently predicted NAT2 phenotype. Controlling for the effect of genotype, ethnic Ethiopians living in Ethiopia had significantly higher NAT2 MR than those living in Sweden (p = 0.006). NAT2 genotype-phenotype concordance rate was 75%. Distinct country-of-residence-based genotype-phenotype discordance was observed. The proportion of phenotypically determined rapid acetylators was significantly higher and slow acetylators was lower in Ethiopians living in Ethiopia (39% rapid, 61% slow) than in Sweden (20% rapid, 80% slow). Sex and smoking had no significant effect on NAT2 MR. CONCLUSIONS: We report a high prevalence of NAT 2 slow acetylators in Ethiopians and a conditional NAT2 genotype-phenotype discordance implicating a partial phenotype conversion and metabolic adaptation. Gene-environment interactions regulate NAT2 phenotype.
Asunto(s)
Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Población Negra/genética , Interacción Gen-Ambiente , Adulto , Cafeína/farmacocinética , Etiopía , Femenino , Genotipo , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Suecia , Uracilo/análogos & derivados , Uracilo/orina , Ácido Úrico/análogos & derivados , Ácido Úrico/orina , Xantinas/orinaRESUMEN
Raman spectroscopy can probe the structure and conformations of specific chemical groups within proteins and may thus be used as a technique complementary to X-ray crystallography. This combined approach can be decisive in resolving ambiguities in the interpretation of enzymatic or X-ray induced processes. Here, we present an online Raman setup developed at the European Synchrotron that allows for interleaved Raman spectra acquisition and X-ray diffraction measurements with fast probe exchange and simple alignment while maintaining a high sensitivity over the entire spectral range. This device has been recently employed in the study of a covalent intermediate in the O2-dependent breakdown of uric acid by the cofactor-free enzyme urate oxidase and to monitor its decay induced by X-ray exposure.
Asunto(s)
Espectrometría Raman/métodos , Urato Oxidasa/metabolismo , Ácido Úrico/química , Cristalografía por Rayos X/métodos , Conformación Molecular , Sincrotrones , Ácido Úrico/análogos & derivados , Difracción de Rayos X/métodosRESUMEN
AIMS: The purpose of this study was to explore clinical markers reflecting developmental changes in drug clearance by preterm infants. METHODS: Preterm infants administered aminophylline or theophylline to treat apnoea of prematurity were enrolled in this study. Trough and one of 2 h, 4 h or 6 h post-dose blood samples and urine samples were collected during steady state, to determine the concentrations of theophylline and its targeted metabolites. CYP1A2*1C and CYP1A2*1F genotypes were analyzed. Total, renal and nonrenal clearances of theophylline were calculated, and cytochrome P450 1A2 (CYP1A2) activity was obtained from the ratio of 1-methyluric acid and 3-methylxanthine to theophylline in urine. Multiple linear regression analysis was performed to evaluate the relationships between theophylline clearance and the clinical characteristics of preterm infants. RESULTS: A total of 152 samples from 104 preterm infants were analyzed. A strong association between the serum trough and urine theophylline concentrations was found (P < 0.001). Total, renal and nonrenal clearances of theophylline were 0.50 ± 0.29 ml kg-1 min-1 , 0.16 ± 0.06 ml kg-1 min-1 and 0.34 ± 0.28 ml kg-1 min-1 , respectively. CYP1A2 activity correlated positively with the postnatal age and postmenstrual age. However, CYP1A2 genotype was not associated with CYP1A2 activity, which was significantly associated with nonrenal clearance. CYP1A2 activity, postnatal age , weight and 24-h urine output were significantly associated with total theophylline clearance. CONCLUSIONS: CYP1A2 activity can be monitored using noninvasive random urine samples, and it can be used to assess developmental changes in theophylline clearance by preterm infants.
Asunto(s)
Broncodilatadores/sangre , Broncodilatadores/orina , Citocromo P-450 CYP1A2/metabolismo , Teofilina/sangre , Teofilina/orina , Envejecimiento/metabolismo , Apnea/tratamiento farmacológico , Broncodilatadores/uso terapéutico , Citocromo P-450 CYP1A2/genética , Femenino , Genotipo , Edad Gestacional , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Masculino , Teofilina/uso terapéutico , Ácido Úrico/análogos & derivados , Ácido Úrico/orina , Xantinas/orinaRESUMEN
Transthyretin (TTR) is a vertebrate-specific protein involved in thyroid hormone distribution in plasma, and its gene is thought to have emerged by gene duplication from the gene for the ancient TTR-related protein, 5-hydroxyisourate hydrolase, at some early stage of chordate evolution. We investigated the molecular and hormone-binding properties of the brown hagfish Paramyxine atami TTR. The amino acid sequence deduced from the cloned hagfish TTR cDNA shared 33-50% identities with those of other vertebrate TTRs but less than 24% identities with those of vertebrate and deuterostome invertebrate 5-hydroxyisourate hydrolases. Hagfish TTR, as well as lamprey and little skate TTRs, had an N-terminal histidine-rich segment, allowing purification by metal-affinity chromatography. The affinity of hagfish TTR for 3,3',5-triiodo-L-thyronine (T3) was 190 times higher than that for L-thyroxine, with a dissociation constant of 1.5-3.9nM at 4°C. The high-affinity binding sites were strongly sensitive to metal ions. Zn2+ and Cu2+ decreased the dissociation constant to one-order of magnitude, whereas a chelator, o-phenanthroline, increased it four times. The number of metal ions (mainly Zn2+ and Cu2+) was approximately 12/TTR (mol/mol). TTR was also a major T3-binding protein in adult hagfish sera and its serum concentration was approximately 8µM. These results suggest that metal ions and the acquisition of N-terminal histidine-rich segment may cooperatively contribute to the evolution toward an ancient TTR with high T3 binding activity from either 5-hydroxyisourate hydrolase after gene duplication.
Asunto(s)
Anguila Babosa/metabolismo , Metales/farmacología , Prealbúmina/metabolismo , Hormonas Tiroideas/metabolismo , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Cationes Bivalentes/farmacología , ADN Complementario/genética , Perfilación de la Expresión Génica , Hidrólisis , Cinética , Filogenia , Prealbúmina/química , Prealbúmina/genética , Prealbúmina/aislamiento & purificación , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Suero/metabolismo , Factores de Tiempo , Triyodotironina/metabolismo , Ácido Úrico/análogos & derivados , Ácido Úrico/metabolismoRESUMEN
BACKGROUND: Caffeine is a widely consumed psychoactive stimulant and is of epidemiologic interest. Major sources of caffeine are challenging to standardize, and the use of biomarkers is proposed as an alternative means of assessing intake. OBJECTIVE: We described urine caffeine and caffeine metabolite concentrations (n = 2466) and excretion rates (n = 2261) in the US population ≥6 y by age, sex, race-ethnicity, and caffeine intake (from foods, beverages, and dietary supplements). METHODS: We measured caffeine and 14 of its metabolites in spot urine samples from the cross-sectional NHANES 2009-2010 by use of LC-tandem mass spectrometry. RESULTS: Caffeine and its metabolites were detectable in the urine of most persons, generally at concentrations ≥1 µmol/L. Median concentrations (95% CI) ranged from 0.560 (0.497, 0.620) µmol/L to 58.6 (48.6, 67.2) µmol/L; median excretion rates from 0.423 (0.385, 0.468) nmol/min to 46.0 (40.7, 50.2) nmol/min. Urine concentrations and excretion rates for 9 analytes (caffeine, theophylline, paraxanthine, 1-methylxanthine, 1-methyluric acid, 1,3-dimethyluric acid, 1,7-dimethyluric acid, 1,3,7-trimethyluric acid, and 5-acetylamino-6-amino-3-methyluracil) had moderate correlations with caffeine intake (Spearman ρ = 0.55-0.68, P < 0.0001); the remaining analytes had low correlations (ρ = 0.15-0.33, P < 0.0001). We observed larger differences in geometric mean concentrations and excretion rates between the highest vs. lowest quartiles of caffeine intake for these 9 compounds than the rest. Consistent with dietary caffeine intake, we observed that urine concentrations and excretion rates for most compounds were significantly (P < 0.05) higher in men than women, non-Hispanic whites than Hispanics and non-Hispanic blacks, and highest in persons aged 40-59 y. CONCLUSION: Excretion of caffeine and its metabolites in urine is common in the US population. According to the observed associations between spot urine concentrations or excretion rates with caffeine intake, several of these compounds show promise as potential biomarkers of caffeine intake.
Asunto(s)
Cafeína/administración & dosificación , Cafeína/orina , Adolescente , Adulto , Negro o Afroamericano , Biomarcadores/orina , Niño , Cromatografía Liquida , Estudios Transversales , Femenino , Hispánicos o Latinos , Humanos , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Espectrometría de Masas en Tándem , Teofilina/orina , Uracilo/análogos & derivados , Uracilo/orina , Ácido Úrico/análogos & derivados , Ácido Úrico/orina , Población Blanca , Xantinas/orina , Adulto JovenRESUMEN
Urate hydroperoxide is a strong oxidant generated by the combination of urate free radical and superoxide. The formation of urate hydroperoxide as an intermediate in urate oxidation is potentially responsible for the pro-oxidant effects of urate in inflammatory disorders, protein degradation, and food decomposition. To understand the molecular mechanisms that sustain the harmful effects of urate in inflammatory and oxidative stress related conditions, we report a detailed structural characterization and reactivity of urate hydroperoxide toward biomolecules. Urate hydroperoxide was synthesized by photo-oxidation and by a myeloperoxidase/hydrogen peroxide/superoxide system. Multiple reaction monitoring (MRM) and MS(3) ion fragmentation revealed that urate hydroperoxide from both sources has the same chemical structure. Urate hydroperoxide has a maximum absorption at 308 nm, ε308nm = 6.54 ± 0.38 × 10(3) M(-1) cm(-1). This peroxide decays spontaneously with a rate constant of k = 2.80 ± 0.18 × 10(-4) s(-1) and a half-life of 41 min at 22 °C. Urate hydroperoxide undergoes electrochemical reduction at potential values less negative than -0.5 V (versus Ag/AgCl). When incubated with taurine, histidine, tryptophan, lysine, methionine, cysteine, or glutathione, urate hydroperoxide reacted only with methionine, cysteine, and glutathione. The oxidation of these molecules occurred by a two-electron mechanism, generating the alcohol, hydroxyisourate. No adduct between cysteine or glutathione and urate hydroperoxide was detected. The second-order rate constant for the oxidation of glutathione by urate hydroperoxide was 13.7 ± 0.8 M(-1) s(-1). In conclusion, the oxidation of sulfur-containing biomolecules by urate hydroperoxide is likely to be a mechanism by which the pro-oxidant and damaging effects of urate are mediated in inflammatory and photo-oxidizing processes.
Asunto(s)
Peróxido de Hidrógeno/química , Luz , Peróxidos/química , Ácido Úrico/análogos & derivados , Ácido Úrico/química , Cromatografía Liquida , Glutatión/química , Cinética , Estructura Molecular , Oxidación-Reducción , Estrés Oxidativo , Espectrometría de Masa por Ionización de Electrospray , Ácido Úrico/metabolismoRESUMEN
Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR.
Asunto(s)
Prealbúmina/metabolismo , Proteínas Recombinantes/metabolismo , Rajidae/fisiología , Glándula Tiroides/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Zinc/metabolismo , Amidohidrolasas/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Glándula Tiroides/citología , Hormonas Tiroideas/metabolismo , Ácido Úrico/análogos & derivados , Ácido Úrico/metabolismo , Proteínas de Unión a Hormona TiroideRESUMEN
BACKGROUND: Heavy tea consumption is suggested to be unsuitable for hypertensive people. However, the bioactive substances in different varieties of tea leaves are very different. This study compares the effects of three Chinese teas - C. sinensis, C. ptilophylla and C. assamica var. kucha - on blood pressure (BP) and heart rate in spontaneously hypertensive rats (SHRs). RESULTS: Intragastric administration of C. sinensis extract led to an acute increase in systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate in SHRs. However, C. ptilophylla and C. assamica var. kucha exerted no obvious influences on SBP, DBP or heart rate. Similar to the extract of C. sinensis, intragastric administration of caffeine also led to an acute increase in BP and heart rate in SHRs. In contrast, theobromine and theacrine - purine alkaloids predominantly contained in C. ptilophylla and C. assamica var. kucha, respectively - had no pressor effects. The effect of caffeine on BP was related to the regulation of plasma epinephrine and norepinephrine levels in SHRs. CONCLUSION: The different effects of C. sinensis, C. ptilophylla and C. assamica var. kucha on BP might be explained, at least partially, by the differences in the varieties and contents of purine alkaloids.