Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.529
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 167(1): 73-86.e12, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662084

RESUMEN

Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Contracción Muscular/fisiología , Neuronas/fisiología , Puente/fisiología , Vejiga Urinaria/fisiología , Micción/fisiología , Animales , Femenino , Ácido Glutámico/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Puente/citología , Olfato , Médula Espinal/citología , Médula Espinal/fisiología , Vejiga Urinaria/inervación
2.
Annu Rev Cell Dev Biol ; 30: 439-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288116

RESUMEN

Astrocytes regulate multiple aspects of neuronal and synaptic function from development through to adulthood. Instead of addressing each function independently, this review provides a comprehensive overview of the different ways astrocytes modulate neuronal synaptic function throughout life, with a particular focus on recent findings in each area. It includes the emerging functions of astrocytes, such as a role in synapse formation, as well as more established roles, including the uptake and recycling of neurotransmitters. This broad approach covers the many ways astrocytes and neurons constantly interact to maintain the correct functioning of the brain. It is important to consider all of these diverse functions of astrocytes when investigating how astrocyte-neuron interactions regulate synaptic behavior to appreciate the complexity of these ongoing interactions.


Asunto(s)
Astrocitos/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Señalización del Calcio , Comunicación Celular , Ácido Glutámico/fisiología , Humanos , Transporte Iónico , Lípidos/biosíntesis , Neuronas/fisiología , Neurotransmisores/fisiología , Proteínas de Transporte de Neurotransmisores/fisiología , Potasio/metabolismo , Receptores de Neurotransmisores/fisiología
3.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37989594

RESUMEN

Glutamate spillover from the synapse is tightly regulated by astrocytes, limiting the activation of extrasynaptically located NMDA receptors (NMDAR). The processes of astrocytes are dynamic and can modulate synaptic physiology. Though norepinephrine (NE) and ß-adrenergic receptor (ß-AR) activity can modify astrocyte volume, this has yet to be confirmed outside of sensory cortical areas, nor has the effect of noradrenergic signaling on glutamate spillover and neuronal NMDAR activity been explored. We monitored changes to astrocyte process volume in response to noradrenergic agonists in the medial prefrontal cortex of male and female mice. Both NE and the ß-AR agonist isoproterenol (ISO) increased process volume by ∼20%, significantly higher than changes seen when astrocytes had G-protein signaling blocked by GDPßS. We measured the effect of ß-AR signaling on evoked NMDAR currents. While ISO did not affect single stimulus excitatory currents of Layer 5 pyramidal neurons, ISO reduced NMDAR currents evoked by 10 stimuli at 50 Hz, which elicits glutamate spillover, by 18%. After isolating extrasynaptic NMDARs by blocking synaptic NMDARs with the activity-dependent NMDAR blocker MK-801, ISO similarly reduced extrasynaptic NMDAR currents in response to 10 stimuli by 18%. Finally, blocking ß-AR signaling in the astrocyte network by loading them with GDPßS reversed the ISO effect on 10 stimuli-evoked NMDAR currents. These results demonstrate that astrocyte ß-AR activity reduces extrasynaptic NMDAR recruitment, suggesting that glutamate spillover is reduced.


Asunto(s)
Astrocitos , Receptores de N-Metil-D-Aspartato , Ratones , Animales , Masculino , Femenino , Receptores de N-Metil-D-Aspartato/metabolismo , Astrocitos/metabolismo , Células Piramidales/fisiología , Corteza Prefrontal/fisiología , Ácido Glutámico/fisiología , Receptores Adrenérgicos beta , Sinapsis/fisiología
4.
Front Neuroendocrinol ; 70: 101069, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149229

RESUMEN

Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.


Asunto(s)
Hormonas Hipotalámicas , Hormonas Hipotalámicas/metabolismo , Hormonas Hipotalámicas/farmacología , Hormonas Hipofisarias/farmacología , Hormonas Hipofisarias/fisiología , Neuronas/metabolismo , Melaninas/farmacología , Melaninas/fisiología , Hipotálamo/metabolismo , Ácido Glutámico/farmacología , Ácido Glutámico/fisiología , Neurotransmisores , Ácido gamma-Aminobutírico
5.
J Neurosci ; 42(46): 8670-8693, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36195440

RESUMEN

We identified three types of monosynaptic cholinergic inputs spatially arranged onto medial substantia nigra dopaminergic neurons in male and female mice: cotransmitted acetylcholine (ACh)/GABA, GABA-only, and ACh only. There was a predominant GABA-only conductance along lateral dendrites and soma-centered ACh/GABA cotransmission. In response to repeated stimulation, the GABA conductance found on lateral dendrites decremented less than the proximally located GABA conductance, and was more effective at inhibiting action potentials. While soma-localized ACh/GABA cotransmission showed depression of the GABA component with repeated stimulation, ACh-mediated nicotinic responses were largely maintained. We investigated whether this differential change in inhibitory/excitatory inputs leads to altered neuronal excitability. We found that a depolarizing current or glutamate preceded by cotransmitted ACh/GABA was more effective in eliciting an action potential compared with current, glutamate, or ACh/GABA alone. This enhanced excitability was abolished with nicotinic receptor inhibitors, and modulated by T- and L-type calcium channels, thus establishing that activity of multiple classes of ion channels integrates to shape neuronal excitability.SIGNIFICANCE STATEMENT Our laboratory has previously discovered a population of substantia nigra dopaminegic neurons (DA) that receive cotransmitted ACh and GABA. This study used subcellular optogenetic stimulation of cholinergic presynaptic terminals to map the functional ACh and GABA synaptic inputs across the somatodendritic extent of substantia nigra DA neurons. We determined spatially clustered GABA-only inputs on the lateral dendrites while cotransmitted ACh and GABA clustered close to the soma. We have shown that the action of GABA and ACh in cotransmission spatially clustered near the soma play a critical role in enhancing glutamate-mediated neuronal excitability through the activation of T- and L-type voltage-gated calcium channels.


Asunto(s)
Acetilcolina , Neuronas Dopaminérgicas , Masculino , Femenino , Ratones , Animales , Acetilcolina/farmacología , Ácido Glutámico/fisiología , Colinérgicos , Ácido gamma-Aminobutírico , Transmisión Sináptica/fisiología
6.
Annu Rev Neurosci ; 38: 127-49, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25897873

RESUMEN

Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.


Asunto(s)
Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Predisposición Genética a la Enfermedad/genética , Ácido Glutámico/fisiología , Sinapsis/genética , Sinapsis/fisiología , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Modelos Neurológicos , Esquizofrenia/genética , Esquizofrenia/fisiopatología
7.
J Neurosci ; 41(7): 1429-1442, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33328294

RESUMEN

Blood pressure is controlled by endocrine, autonomic, and behavioral responses that maintain blood volume and perfusion pressure at levels optimal for survival. Although it is clear that central angiotensin type 1a receptors (AT1aR; encoded by the Agtr1a gene) influence these processes, the neuronal circuits mediating these effects are incompletely understood. The present studies characterize the structure and function of AT1aR neurons in the lamina terminalis (containing the median preoptic nucleus and organum vasculosum of the lamina terminalis), thereby evaluating their roles in blood pressure control. Using male Agtr1a-Cre mice, neuroanatomical studies reveal that AT1aR neurons in the area are largely glutamatergic and send projections to the paraventricular nucleus of the hypothalamus (PVN) that appear to synapse onto vasopressin-synthesizing neurons. To evaluate the functionality of these lamina terminalis AT1aR neurons, we virally delivered light-sensitive opsins and then optogenetically excited or inhibited the neurons while evaluating cardiovascular parameters or fluid intake. Optogenetic excitation robustly elevated blood pressure, water intake, and sodium intake, while optogenetic inhibition produced the opposite effects. Intriguingly, optogenetic excitation of these AT1aR neurons of the lamina terminalis also resulted in Fos induction in vasopressin neurons within the PVN and supraoptic nucleus. Further, within the PVN, selective optogenetic stimulation of afferents that arise from these lamina terminalis AT1aR neurons induced glutamate release onto magnocellular neurons and was sufficient to increase blood pressure. These cardiovascular effects were attenuated by systemic pretreatment with a vasopressin-1a-receptor antagonist. Collectively, these data indicate that excitation of lamina terminalis AT1aR neurons induces neuroendocrine and behavioral responses that increase blood pressure.SIGNIFICANCE STATEMENT Hypertension is a widespread health problem and risk factor for cardiovascular disease. Although treatments exist, a substantial percentage of patients suffer from "drug-resistant" hypertension, a condition associated with increased activation of brain angiotensin receptors, enhanced sympathetic nervous system activity, and elevated vasopressin levels. The present study highlights a role for angiotensin Type 1a receptor expressing neurons located within the lamina terminalis in regulating endocrine and behavioral responses that are involved in maintaining cardiovascular homeostasis. More specifically, data presented here reveal functional excitatory connections between angiotensin-sensitive neurons in the lamina terminals and vasopressin neurons in the paraventricular nucleus of the hypothalamus, and further indicate that activation of this circuit raises blood pressure. These neurons may be a promising target for antihypertensive therapeutics.


Asunto(s)
Angiotensinas/farmacología , Arginina Vasopresina/metabolismo , Presión Sanguínea/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Núcleo Basal de Meynert/efectos de los fármacos , Núcleo Basal de Meynert/metabolismo , Ingestión de Líquidos/efectos de los fármacos , Genes fos/efectos de los fármacos , Ácido Glutámico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptores de Vasopresinas/efectos de los fármacos , Sodio en la Dieta
8.
Nat Rev Neurosci ; 18(4): 236-249, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303017

RESUMEN

NMDA receptors are preeminent neurotransmitter-gated channels in the CNS, which respond to glutamate in a manner that integrates multiple external and internal cues. They belong to the ionotropic glutamate receptor family and fulfil unique and crucial roles in neuronal development and function. These roles depend on characteristic response kinetics, which reflect the operation of the receptors. Here, we review biologically salient features of the NMDA receptor signal and its mechanistic origins. Knowledge of distinctive NMDA receptor biophysical properties, their structural determinants and physiological roles is necessary to understand the physiological and neurotoxic actions of glutamate and to design effective therapeutics.


Asunto(s)
Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Animales , Ácido Glutámico/fisiología , Humanos , Cinética , Modelos Neurológicos
9.
Nat Rev Neurosci ; 18(2): 73-85, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28053327

RESUMEN

Dopamine-releasing neurons of the ventral tegmental area (VTA) have central roles in reward-related and goal-directed behaviours. VTA dopamine-releasing neurons are heterogeneous in their afferent and efferent connectivity and, in some cases, release GABA or glutamate in addition to dopamine. Recent findings show that motivational signals arising from the VTA can also be carried by non-dopamine-releasing projection neurons, which have their own specific connectivity. Both dopamine-releasing and non-dopamine-releasing VTA neurons integrate afferent signals with local inhibitory or excitatory inputs to generate particular output firing patterns. Various individual inputs, outputs and local connections have been shown to be sufficient to generate reward- or aversion-related behaviour, indicative of the impressive contribution of this small population of neurons to behaviour.


Asunto(s)
Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Recompensa , Área Tegmental Ventral/anatomía & histología , Área Tegmental Ventral/fisiología , Animales , Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/fisiología , Ácido Glutámico/fisiología , Modelos Neurológicos , Motivación/fisiología , Transmisión Sináptica/fisiología
10.
Mol Cell Neurosci ; 112: 103613, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33753311

RESUMEN

Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Unión al Calcio/fisiología , Calcio/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinaptotagmina I/fisiología , Proteínas de Transporte Vesicular/fisiología , Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Células Cultivadas , Secuencia Conservada , Ácido Glutámico/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sinaptotagmina I/química , Sinaptotagmina I/deficiencia , Sinaptotagmina I/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética , Rabfilina-3A
11.
J Neurosci ; 40(14): 2793-2807, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32102922

RESUMEN

The spatiotemporal dynamics of excitatory neurotransmission must be tightly regulated to achieve efficient synaptic communication. By limiting spillover, glutamate transporters are believed to prevent excessive activation of extrasynaptically located receptors that can impair synaptic plasticity. While glutamate transporter expression is reduced in numerous neurodegenerative diseases, the contributions of transporter dysfunction to disease pathophysiology remain ambiguous as the fundamental relationship between glutamate dynamics and plasticity, and the mechanisms linking these two phenomena, remain poorly understood. Here, we combined electrophysiology and real-time high-speed imaging of extracellular glutamate transients during LTP induction and characterized the sensitivity of the relationship between glutamate dynamics during theta burst stimulation (TBS) and the resulting magnitude of LTP consolidation, both in control conditions and following selective and nonselective glutamate transporter blockade. Glutamate clearance times were negatively correlated with LTP magnitude following nonselective glutamate transporter inhibition but not following selective blockade of a majority of GLT-1, the brain's most abundant glutamate transporter. Although glutamate transporter inhibition reduced the postsynaptic population response to TBS, calcium responses to TBS were greatly exaggerated. The source of excess calcium was dependent on NMDARs, L-type VGCCs, GluA2-lacking AMPARs, and internal calcium stores. Surprisingly, inhibition of L-type VGCCs, but not GluA2-lacking AMPARs or ryanodine receptors, was required to restore robust LTP. In all, these data provide a detailed understanding of the relationship between glutamate dynamics and plasticity and uncover important mechanisms by which poor glutamate uptake can negatively impact LTP consolidation.SIGNIFICANCE STATEMENT Specific patterns of neural activity can promote long-term changes in the strength of synaptic connections through a phenomenon known as synaptic plasticity. Synaptic plasticity is well accepted to represent the cellular mechanisms underlying learning and memory, and many forms of plasticity are initiated by the excitatory neurotransmitter glutamate. While essential for rapid cellular communication in the brain, excessive levels of extracellular glutamate can negatively impact brain function. In this study, we demonstrate that pharmacological manipulations that increase the availability of extracellular glutamate during neural activity can have profoundly negative consequences on synaptic plasticity. We identify mechanisms through which excess glutamate can negatively influence synaptic plasticity, and we discuss the relevance of these findings to neurodegenerative diseases and in the aging brain.


Asunto(s)
Ácido Glutámico/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
12.
J Neurosci ; 40(44): 8413-8425, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32978288

RESUMEN

The interplay between hippocampus and medial entorhinal cortex (mEC) is of key importance for forming spatial representations. Within the hippocampal-entorhinal loop, the hippocampus receives context-specific signals from layers II/III of the mEC and feeds memory-associated activity back into layer V (LV). The processing of this output signal within the mEC, however, is largely unknown. We characterized the activation of the receiving mEC network by evoked and naturally occurring output patterns in mouse hippocampal-entorhinal cortex slices. Both types of glutamatergic neurons (mEC LVa and LVb) as well as fast-spiking inhibitory interneurons receive direct excitatory input from the intermediate/ventral hippocampus. Connections between the two types of excitatory neurons are sparse, and local processing of hippocampal output signals within mEC LV is asymmetric, favoring excitation of far projecting LVa neurons over locally projecting LVb neurons. These findings suggest a new role for mEC LV as a bifurcation gate for feedforward (telencephalic) and feedback (entorhinal-hippocampal) signal propagation.SIGNIFICANCE STATEMENT Patterned network activity in hippocampal networks plays a key role in the formation and consolidation of spatial memories. It is, however, largely unclear how information is transferred to the neocortex for long-term engrams. Here, we elucidate the propagation of network activity from the hippocampus to the medial entorhinal cortex. We show that patterned output from the hippocampus reaches both major cell types of deep entorhinal layers. These cells are, however, only weakly connected, giving rise to two parallel streams of activity for local and remote signal propagation, respectively. The relative weight of both pathways is regulated by local inhibitory interneurons. Our data reveal important insights into the hippocampal-neocortical dialogue, which is of key importance for memory consolidation in the mammalian brain.


Asunto(s)
Corteza Entorrinal/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica , Ácido Glutámico/fisiología , Técnicas In Vitro , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
13.
J Neurosci ; 40(33): 6270-6288, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32631939

RESUMEN

Structural and functional plasticity induced by neuronal competition is a common feature of developing nervous systems. However, the rules governing how postsynaptic cells differentiate between presynaptic inputs are unclear. In this study, we characterized synaptic interactions following manipulations of tonic Ib or phasic Is glutamatergic motoneurons that coinnervate postsynaptic muscles of male or female Drosophila melanogaster larvae. After identifying drivers for each neuronal subtype, we performed ablation or genetic manipulations to alter neuronal activity and examined the effects on synaptic innervation and function at neuromuscular junctions. Ablation of either Ib or Is resulted in decreased muscle response, with some functional compensation occurring in the Ib input when Is was missing. In contrast, the Is terminal failed to show functional or structural changes following loss of the coinnervating Ib input. Decreasing the activity of the Ib or Is neuron with tetanus toxin light chain resulted in structural changes in muscle innervation. Decreased Ib activity resulted in reduced active zone (AZ) number and decreased postsynaptic subsynaptic reticulum volume, with the emergence of filopodial-like protrusions from synaptic boutons of the Ib input. Decreased Is activity did not induce structural changes at its own synapses, but the coinnervating Ib motoneuron increased the number of synaptic boutons and AZs it formed. These findings indicate that tonic Ib and phasic Is motoneurons respond independently to changes in activity, with either functional or structural alterations in the Ib neuron occurring following ablation or reduced activity of the coinnervating Is input, respectively.SIGNIFICANCE STATEMENT Both invertebrate and vertebrate nervous systems display synaptic plasticity in response to behavioral experiences, indicating that underlying mechanisms emerged early in evolution. How specific neuronal classes innervating the same postsynaptic target display distinct types of plasticity is unclear. Here, we examined whether Drosophila tonic Ib and phasic Is motoneurons display competitive or cooperative interactions during innervation of the same muscle, or compensatory changes when the output of one motoneuron is altered. We established a system to differentially manipulate the motoneurons and examined the effects of cell type-specific changes to one of the inputs. Our findings indicate Ib and Is motoneurons respond differently to activity mismatch or loss of the coinnervating input, with the Ib subclass responding robustly compared with Is motoneurons.


Asunto(s)
Neuronas Motoras/citología , Neuronas Motoras/fisiología , Unión Neuromuscular/citología , Unión Neuromuscular/fisiología , Plasticidad Neuronal , Sinapsis/fisiología , Animales , Drosophila melanogaster , Femenino , Ácido Glutámico/fisiología , Masculino , Potenciales de la Membrana , Terminales Presinápticos/fisiología
14.
J Neurosci ; 40(44): 8426-8437, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32989096

RESUMEN

Synaptic strength and reliability are determined by the number of vesicles released per action potential and the availability of release-competent vesicles in the readily releasable pool (RRP). Compared with release of a single vesicle (univesicular release), multivesicular release (MVR) would speed up RRP depletion, yet whether the RRP is refilled differently during the two different release modes has not been investigated. Here, we address this question by quantitative optical imaging with an axon-targeting glutamate sensor, iGluSnFRpre. We found that hippocampal synapses preferentially release multiple vesicles per action potential at high extracellular calcium or by paired-pulse stimulation. When MVR prevails, the RRP is recovered very rapidly with a time constant of 430 ms. This rapid recovery is mediated by dynamin-dependent endocytosis followed by direct reuse of retrieved vesicles. Furthermore, our simulation proved that the portion of retrieved vesicles that directly refill the RRP increases dramatically (>70%) in MVR compared with that in univesicular release (<10%). These results suggest that the contribution of rapid and direct recruitment of retrieved vesicle to the RRP changes dynamically with release mode at the level of individual synapses, which suggests a form of presynaptic homeostatic plasticity for reliable synaptic transmission during various synaptic activity.SIGNIFICANCE STATEMENT The number of vesicles released in response to an action potential and the number of release competent vesicles in the readily releasable pool (RRP) are the fundamental determinants of synaptic efficacy. Despite its functional advantages, releasing multiple vesicles, especially at small synapses, can deplete the RRP after a couple of action potentials. To prevent failure of synaptic transmission, the RRP should be refilled rapidly, yet whether the RRP replenishment process is regulated by the release mode has not been investigated. Here, using quantitative optical glutamate imaging and simulation, we demonstrate that the contribution of the fast refilling mechanism changes with release mode at the level of individual synapses, suggesting a rapid form of presynaptic homeostatic plasticity during various synaptic activity.


Asunto(s)
Hipocampo/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Señalización del Calcio/fisiología , Simulación por Computador , Dinaminas/fisiología , Fenómenos Electrofisiológicos , Endocitosis , Ácido Glutámico/metabolismo , Ácido Glutámico/fisiología , Inmunohistoquímica , Cinética , Ratas , Transmisión Sináptica
15.
J Neurosci ; 40(49): 9414-9425, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33115926

RESUMEN

Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cortical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition. Moreover, AON-to-piriform synapses contain a substantial NMDAR-mediated current that prolongs the synaptic response at depolarized potentials. These properties of limited inhibition and slow NMDAR-mediated currents result in strong temporal summation of AON inputs within piriform pyramidal neurons, and suggest that the AON could powerfully enhance activation of piriform neurons in response to odor.SIGNIFICANCE STATEMENT Odor information is transmitted from olfactory receptors to olfactory bulb, and then to piriform cortex, where ensembles of activated neurons form neural representations of the odor. While these ensembles are driven by primary bulbar afferents, and shaped by intracortical recurrent connections, the potential for another early olfactory area, the anterior olfactory nucleus (AON), to contribute to piriform activity is not known. Here, we use optogenetic circuit-mapping methods to demonstrate that AON inputs can significantly activate piriform neurons, as they are coupled to NMDAR currents and to relatively modest disynaptic inhibition. The AON may enhance the piriform odor response, encouraging further study to determine the states or behaviors through which AON potentiates the cortical response to odor.


Asunto(s)
Corteza Olfatoria/fisiología , Corteza Piriforme/fisiología , Olfato/fisiología , Sinapsis/fisiología , Animales , Femenino , Ácido Glutámico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/fisiología , Odorantes , Bulbo Olfatorio/fisiología , Optogenética , Células Piramidales , Receptores de N-Metil-D-Aspartato/fisiología
16.
J Neurosci ; 40(1): 159-170, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31694963

RESUMEN

The cerebellum drives motor coordination and sequencing of actions at the millisecond timescale through adaptive control of cerebellar nuclear output. Cerebellar nuclei integrate high-frequency information from both the cerebellar cortex and the two main excitatory inputs of the cerebellum: the mossy fibers and the climbing fiber collaterals. However, how nuclear cells process rate and timing of inputs carried by these inputs is still debated. Here, we investigate the influence of the cerebellar cortical output, the Purkinje cells, on identified cerebellar nuclei neurons in vivo in male mice. Using transgenic mice expressing Channelrhodopsin2 specifically in Purkinje cells and tetrode recordings in the medial nucleus, we identified two main groups of neurons based on the waveform of their action potentials. These two groups of neurons coincide with glutamatergic and GABAergic neurons identified by optotagging after Chrimson expression in VGLUT2-cre and GAD-cre mice, respectively. The glutamatergic-like neurons fire at high rate and respond to both rate and timing of Purkinje cell population inputs, whereas GABAergic-like neurons only respond to the mean population firing rate of Purkinje cells at high frequencies. Moreover, synchronous activation of Purkinje cells can entrain the glutamatergic-like, but not the GABAergic-like, cells over a wide range of frequencies. Our results suggest that the downstream effect of synchronous and rhythmic Purkinje cell discharges depends on the type of cerebellar nuclei neurons targeted.SIGNIFICANCE STATEMENT Motor coordination and skilled movements are driven by the permanent discharge of neurons from the cerebellar nuclei that communicate cerebellar computation to other brain areas. Here, we set out to study how specific subtypes of cerebellar nuclear neurons of the medial nucleus are controlled by Purkinje cells, the sole output of the cerebellar cortex. We could isolate different subtypes of nuclear cell that differentially encode Purkinje cell inhibition. Purkinje cell stimulation entrains glutamatergic projection cells at their firing frequency, whereas GABAergic neurons are only inhibited. These differential coding strategies may favor temporal precision of cerebellar excitatory outputs associated with specific features of movement control while setting the global level of cerebellar activity through inhibition via rate coding mechanisms.


Asunto(s)
Núcleos Cerebelosos/fisiología , Neuronas GABAérgicas/fisiología , Ácido Glutámico/fisiología , Células de Purkinje/fisiología , Potenciales de Acción , Vías Aferentes/fisiología , Anestesia , Animales , Núcleos Cerebelosos/citología , Channelrhodopsins/fisiología , Genes Reporteros , Glutamato Descarboxilasa/genética , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora , Neuronas/fisiología , Optogenética , Factores de Tiempo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Vigilia
17.
J Neurosci ; 40(42): 8025-8041, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928887

RESUMEN

Within mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits. We tested for such scaling in a Drosophila larval neuromuscular circuit, where the muscle receives synaptic inputs from different motoneurons. We used motoneuron-specific genetic manipulations to increase the activity of only one motoneuron and recordings of postsynaptic currents from inputs formed by the different motoneurons. We discovered an adaptation which caused uniform downscaling of evoked neurotransmitter release across all inputs through decreases in release probabilities. This "presynaptic downscaling" maintained the relative differences in neurotransmitter release across all inputs around a homeostatic set point, caused a compensatory decrease in synaptic drive to the muscle affording robust and stable muscle activity, and was induced within hours. Presynaptic downscaling was associated with an activity-dependent increase in Drosophila vesicular glutamate transporter expression. Activity-dependent uniform scaling can therefore manifest also on the presynaptic side to produce robust and stable circuit outputs. Within brain circuits, uniform downscaling on the postsynaptic side is implicated in sleep- and memory-related processes. Our results suggest that evaluation of such processes might be broadened to include uniform downscaling on the presynaptic side.SIGNIFICANCE STATEMENT To date, compensatory adaptations which stabilise target cell activity through activity-dependent global scaling have been observed only within central circuits, and on the postsynaptic side. Considering that maintenance of stable activity is imperative for the robust function of the nervous system as a whole, we tested whether activity-dependent global scaling could also manifest within peripheral circuits. We uncovered a compensatory adaptation which causes global scaling within a peripheral circuit and on the presynaptic side through uniform downscaling of evoked neurotransmitter release. Unlike in central circuits, uniform scaling maintains functionality over a wide, rather than a narrow, operational range, affording robust and stable activity. Activity-dependent global scaling therefore operates on both the presynaptic and postsynaptic sides to maintain target cell activity.


Asunto(s)
Drosophila/fisiología , Ácido Glutámico/fisiología , Neurotransmisores/metabolismo , Animales , Potenciales Evocados/fisiología , Homeostasis , Inmunohistoquímica , Locomoción/fisiología , Neuronas Motoras/fisiología , Músculos/inervación , Músculos/fisiología , Unión Neuromuscular/fisiología , Técnicas de Placa-Clamp , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Proteínas de Transporte Vesicular de Glutamato/metabolismo
18.
J Neurosci ; 40(31): 6068-6081, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601243

RESUMEN

Epilepsy is often associated with emotional disturbances and the endocannabinoid (eCB) system tunes synaptic transmission in brain regions regulating emotional behavior. Thus, persistent alteration of eCB signaling after repeated seizures may contribute to the development of epilepsy-related emotional disorders. Here we report that repeatedly eliciting seizures (kindling) in the amygdala caused a long-term increase in anxiety and impaired fear memory retention, which was paralleled by an imbalance in GABA/glutamate presynaptic activity and alteration of synaptic plasticity in the basolateral amygdala (BLA), in male rats. Anandamide (AEA) content was downregulated after repeated seizures, and pharmacological enhancement of AEA signaling rescued seizure-induced anxiety by restoring the tonic control of the eCB signaling over glutamatergic transmission. Moreover, AEA signaling augmentation also rescued the seizure-induced alterations of fear memory by restoring the phasic control of eCB signaling over GABAergic activity and plasticity in the BLA. These results indicate that modulation of AEA signaling represents a potential and promising target for the treatment of comorbid emotional dysfunction associated with epilepsy.SIGNIFICANCE STATEMENT Epilepsy is a heterogeneous neurologic disorder commonly associated with comorbid emotional alterations. However, the management of epilepsy is usually restricted to the control of seizures. The endocannabinoid (eCB) system, particularly anandamide (AEA) signaling, controls neuronal excitability and seizure expression and regulates emotional behavior. We found that repeated seizures cause an allostatic maladaptation of AEA signaling in the amygdala that drives emotional alterations. Boosting AEA signaling through inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH), restored both synaptic and behavioral alterations. FAAH inhibitors dampen seizure activity in animal models and are used in clinical studies to treat the negative consequences associated with stress. Thereby, they are accessible and can be clinically evaluated to treat both seizures and comorbid conditions associated with epilepsy.


Asunto(s)
Síntomas Afectivos/fisiopatología , Amígdala del Cerebelo/fisiopatología , Ácidos Araquidónicos , Endocannabinoides , Epilepsia/fisiopatología , Alcamidas Poliinsaturadas , Transducción de Señal , Sinapsis , Síntomas Afectivos/etiología , Síntomas Afectivos/psicología , Amidohidrolasas/fisiología , Animales , Ansiedad/psicología , Epilepsia/complicaciones , Epilepsia/psicología , Miedo/psicología , Ácido Glutámico/fisiología , Excitación Neurológica , Masculino , Ratas , Ratas Long-Evans , Ácido gamma-Aminobutírico/fisiología
19.
J Neurosci ; 40(7): 1440-1452, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31826942

RESUMEN

Neuronal diversity provides the spinal cord with the functional flexibility required to perform complex motor tasks. Spinal neurons arise during early embryonic development with the establishment of spatially and molecularly discrete progenitor domains that give rise to distinct, but highly heterogeneous, postmitotic interneuron (IN) populations. Our previous studies have shown that Sim1-expressing V3 INs, originating from the p3 progenitor domain, are anatomically and physiologically divergent. However, the developmental logic guiding V3 subpopulation diversity remains elusive. In specific cases of other IN classes, neurogenesis timing can play a role in determining the ultimate fates and unique characteristics of distinctive subpopulations. To examine whether neurogenesis timing contributes to V3 diversity, we systematically investigated the temporal neurogenesis profiles of V3 INs in the mouse spinal cord. Our work uncovered that V3 INs were organized into either early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves. Early-born V3 INs displayed both ascending and descending commissural projections and clustered into subgroups across dorsoventral spinal laminae. In contrast, late-born V3 INs became fate-restricted to ventral laminae and displayed mostly descending and local commissural projections and uniform membrane properties. Furthermore, we found that the postmitotic transcription factor, Sim1, although expressed in all V3 INs, exclusively regulated the dorsal clustering and electrophysiological diversification of early-born, but not late-born, V3 INs, which indicates that neurogenesis timing may enable newborn V3 INs to interact with different postmitotic differentiation pathways. Thus, our work demonstrates neurogenesis timing as a developmental mechanism underlying the postmitotic differentiation of V3 INs into distinct subpopulation assemblies.SIGNIFICANCE STATEMENT Interneuron (IN) diversity empowers the spinal cord with the computation flexibility required to perform appropriate sensorimotor control. As such, uncovering the developmental logic guiding spinal IN diversity is fundamental to understanding the development of movement. In our current work, through a focus on the cardinal spinal V3 IN population, we investigated the role of neurogenesis timing on IN diversity. We uncovered that V3 INs are organized into early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves, where late-born V3 INs display increasingly restricted subpopulation fates. Next, to better understand the consequences of V3 neurogenesis timing, we investigated the time-dependent functions of the Sim1 transcription factor, which is expressed in postmitotic V3 INs. Interestingly, Sim1 exclusively regulated the diversification of early-born, but not late-born, V3 INs. Thus, our current work indicates neurogenesis timing can modulate the functions of early postmitotic transcription factors and, thus, subpopulation fate specifications.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Interneuronas/fisiología , Neurogénesis , Proteínas Represoras/fisiología , Médula Espinal/citología , Animales , Transporte Axonal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Movimiento Celular , Cruzamientos Genéticos , Ácido Glutámico/fisiología , Interneuronas/clasificación , Ratones , Ratones Noqueados , Neurotransmisores/fisiología , Técnicas de Placa-Clamp , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Factores de Tiempo
20.
J Neurosci ; 40(47): 9028-9042, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33046545

RESUMEN

Local measures of neurotransmitters provide crucial insights into neurobiological changes underlying altered functional connectivity in psychiatric disorders. However, noninvasive neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may cover anatomically and functionally distinct areas, such as p32 and p24 of the pregenual anterior cingulate cortex (pgACC). Here, we aimed to overcome this low spatial specificity of MRS by predicting local glutamate and GABA based on functional characteristics and neuroanatomy in a sample of 88 human participants (35 females), using complementary machine learning approaches. Functional connectivity profiles of pgACC area p32 predicted pgACC glutamate better than chance (R2 = 0.324) and explained more variance compared with area p24 using both elastic net and partial least-squares regression. In contrast, GABA could not be robustly predicted. To summarize, machine learning helps exploit the high resolution of fMRI to improve the interpretation of local neurometabolism. Our augmented multimodal imaging analysis can deliver novel insights into neurobiology by using complementary information.SIGNIFICANCE STATEMENT Magnetic resonance spectroscopy (MRS) measures local glutamate and GABA noninvasively. However, conventional MRS requires large voxels compared with fMRI, because of its inherently low signal-to-noise ratio. Consequently, a single MRS voxel may cover areas with distinct cytoarchitecture. In the largest multimodal 7 tesla machine learning study to date, we overcome this limitation by capitalizing on the spatial resolution of fMRI to predict local neurotransmitters in the PFC. Critically, we found that prefrontal glutamate could be robustly and exclusively predicted from the functional connectivity fingerprint of one of two anatomically and functionally defined areas that form the pregenual anterior cingulate cortex. Our approach provides greater spatial specificity on neurotransmitter levels, potentially improving the understanding of altered functional connectivity in mental disorders.


Asunto(s)
Ácido Glutámico/fisiología , Giro del Cíngulo/fisiología , Vías Nerviosas/fisiología , Neurotransmisores/fisiología , Adulto , Encéfalo , Mapeo Encefálico , Femenino , Ácido Glutámico/genética , Sustancia Gris/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/crecimiento & desarrollo , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Neurotransmisores/genética , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA