Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.072
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 163-190, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220976

RESUMEN

Many DNA-processing enzymes have been shown to contain a [4Fe4S] cluster, a common redox cofactor in biology. Using DNA electrochemistry, we find that binding of the DNA polyanion promotes a negative shift in [4Fe4S] cluster potential, which corresponds thermodynamically to a ∼500-fold increase in DNA-binding affinity for the oxidized [4Fe4S]3+ cluster versus the reduced [4Fe4S]2+ cluster. This redox switch can be activated from a distance using DNA charge transport (DNA CT) chemistry. DNA-processing proteins containing the [4Fe4S] cluster are enumerated, with possible roles for the redox switch highlighted. A model is described where repair proteins may signal one another using DNA-mediated charge transport as a first step in their search for lesions. The redox switch in eukaryotic DNA primases appears to regulate polymerase handoff, and in DNA polymerase δ, the redox switch provides a means to modulate replication in response to oxidative stress. We thus describe redox signaling interactions of DNA-processing [4Fe4S] enzymes, as well as the most interesting potential players to consider in delineating new DNA-mediated redox signaling networks.


Asunto(s)
ADN Glicosilasas/química , ADN Helicasas/química , ADN Polimerasa Dirigida por ADN/química , ADN/química , Endonucleasas/química , Genoma , Proteínas Hierro-Azufre/química , Animales , Bacterias/genética , Bacterias/metabolismo , ADN/metabolismo , ADN/ultraestructura , Daño del ADN , ADN Glicosilasas/metabolismo , ADN Glicosilasas/ultraestructura , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/ultraestructura , Espectroscopía de Resonancia por Spin del Electrón , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/ultraestructura , Oxidación-Reducción , Unión Proteica , Transducción de Señal , Termodinámica
2.
Annu Rev Biochem ; 88: 137-162, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220977

RESUMEN

Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.


Asunto(s)
ADN Glicosilasas/química , ADN Polimerasa Dirigida por ADN/química , ADN/química , Endonucleasas/química , Genoma , Ligasas/química , Liasas/química , ADN/metabolismo , ADN/ultraestructura , Daño del ADN , ADN Glicosilasas/metabolismo , ADN Glicosilasas/ultraestructura , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/ultraestructura , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/citología , Células Eucariotas/enzimología , Inestabilidad Genómica , Humanos , Ligasas/metabolismo , Ligasas/ultraestructura , Liasas/metabolismo , Liasas/ultraestructura , Modelos Moleculares , Mutagénesis , Conformación de Ácido Nucleico , Conformación Proteica
3.
Annu Rev Biochem ; 87: 239-261, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494238

RESUMEN

The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Reparadoras del ADN/clasificación , ADN Polimerasa Dirigida por ADN/clasificación , Humanos , Modelos Biológicos , Modelos Moleculares
4.
Nature ; 621(7978): 415-422, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674080

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN , Mitosis , Proteínas Serina-Treonina Quinasas , Humanos , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Mutaciones Letales Sintéticas , ADN Polimerasa theta , Quinasa Tipo Polo 1
5.
Mol Cell ; 81(21): 4440-4456.e7, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34597596

RESUMEN

Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.


Asunto(s)
Proteína BRCA2/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , Exodesoxirribonucleasas/metabolismo , Factores de Transcripción/química , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Reparación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Células HeLa , Humanos , Ácido Mevalónico , Ratones , Complejos Multiproteicos , Mutación , Unión Proteica , Conformación Proteica , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/metabolismo , Recombinación Genética
6.
Nature ; 606(7912): 204-210, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585232

RESUMEN

Chromosome replication is performed by a complex and intricate ensemble of proteins termed the replisome, where the DNA polymerases Polδ and Polε, DNA polymerase α-primase (Polα) and accessory proteins including AND-1, CLASPIN and TIMELESS-TIPIN (respectively known as Ctf4, Mrc1 and Tof1-Csm3 in Saccharomyces cerevisiae) are organized around the CDC45-MCM-GINS (CMG) replicative helicase1-7. Because a functional human replisome has not been reconstituted from purified proteins, how these factors contribute to human DNA replication and whether additional proteins are required for optimal DNA synthesis are poorly understood. Here we report the biochemical reconstitution of human replisomes that perform fast and efficient DNA replication using 11 purified human replication factors made from 43 polypeptides. Polε, but not Polδ, is crucial for optimal leading-strand synthesis. Unexpectedly, Polε-mediated leading-strand replication is highly dependent on the sliding-clamp processivity factor PCNA and the alternative clamp loader complex CTF18-RFC. We show how CLASPIN and TIMELESS-TIPIN contribute to replisome progression and demonstrate that, in contrast to the budding yeast replisome8, AND-1 directly augments leading-strand replication. Moreover, although AND-1 binds to Polα9,10, the interaction is dispensable for lagging-strand replication, indicating that Polα is functionally recruited via an AND-1-independent mechanism for priming in the human replisome. Collectively, our work reveals how the human replisome achieves fast and efficient leading-strand and lagging-strand DNA replication, and provides a powerful system for future studies of the human replisome and its interactions with other DNA metabolic processes.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Complejos Multienzimáticos , ADN/biosíntesis , ADN Helicasas/aislamiento & purificación , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/aislamiento & purificación , Humanos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/aislamiento & purificación , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 121(23): e2405771121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805295

RESUMEN

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.


Asunto(s)
Proteínas de la Cápside , Virus ADN , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Virus ADN/genética , Eucariontes/virología , Eucariontes/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Modelos Moleculares , Filogenia
8.
Annu Rev Biochem ; 80: 403-36, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21675919

RESUMEN

Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a ß2 processivity factor, and a DnaX complex ATPase that loads ß2 onto DNA and chaperones Pol III onto the newly loaded ß2. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²âº-dependent exonuclease, but also contains a second Zn²âº-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN/química , ADN/metabolismo , ADN Polimerasa III/química , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Modelos Moleculares , Conformación Proteica
9.
PLoS Pathog ; 20(5): e1011652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768256

RESUMEN

The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Virus Vaccinia , Virus Vaccinia/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Cristalografía por Rayos X
10.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38298175

RESUMEN

The ability of mutations to facilitate adaptation is central to evolution. To understand how mutations can lead to functional adaptation in a complex molecular machine, we created a defective version of the T4 clamp-loader complex, which is essential for DNA replication. This variant, which is ∼5,000-fold less active than the wild type, was made by replacing the catalytic domains with those from another phage. A directed-evolution experiment revealed that multiple substitutions to a single negatively charged residue in the chimeric clamp loader-Asp 86-restore fitness to within ∼20-fold of wild type. These mutations remove an adventitious electrostatic repulsive interaction between Asp 86 and the sliding clamp. Thus, the fitness decrease of the chimeric clamp loader is caused by a reduction in affinity between the clamp loader and the clamp. Deep mutagenesis shows that the reduced fitness of the chimeric clamp loader is also compensated for by lysine and arginine substitutions of several DNA-proximal residues in the clamp loader or the sliding clamp. Our results demonstrate that there is a latent capacity for increasing the affinity of the clamp loader for DNA and the sliding clamp, such that even single-point mutations can readily compensate for the loss of function due to suboptimal interactions elsewhere.


Asunto(s)
Adenosina Trifosfatasas , Adenosina Trifosfato , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN , ADN
11.
Nucleic Acids Res ; 51(9): 4488-4507, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070157

RESUMEN

Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.


Asunto(s)
Bacterias , ADN Polimerasa Dirigida por ADN , Archaea/enzimología , Bacterias/enzimología , ADN Polimerasa Dirigida por ADN/química , Eucariontes/enzimología , Filogenia , Uracil-ADN Glicosidasa/química
12.
Biochemistry ; 63(9): 1107-1117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38671548

RESUMEN

DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.


Asunto(s)
ADN Polimerasa theta , ADN Polimerasa Dirigida por ADN , Melanoma , Humanos , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Melanoma/genética , Melanoma/enzimología , Reparación del ADN , Mutación
13.
J Biol Chem ; 299(7): 104872, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257822

RESUMEN

African swine fever virus (ASFV) is an important animal pathogen that is causing a current African swine fever pandemic and affecting pork industry globally. ASFV encodes at least 150 proteins, and the functions of many of them remain to be clarified. The ASFV protein E301R (pE301R) was predicted to be a DNA sliding clamp protein homolog working as a DNA replication processivity factor. However, structural evidence was lacking to support the existence of a ring-shaped sliding clamp in large eukaryotic DNA viruses. Here, we have solved a high-resolution crystal structure of pE301R and identified a canonical ring-shaped clamp comprising a pE301R trimer. Interestingly, this complete-toroidal structure is different from those of the monomeric clamp protein homolog, herpes simplex virus UL42, and the C-shaped dimeric human cytomegalovirus UL44, but highly homologous to that of the eukaryotic clamp homolog proliferating cell nuclear antigen. Moreover, pE301R has a unique N-terminal extension that is important in maintaining the trimeric form of the protein in solution, while specific features in length and surface electrostatic potential of its interdomain connector implies specificity in interactions with binding partners such as the viral DNA polymerase. Thus, our data pave the way for further dissection of the processivity clamp protein structural and functional diversity and ASFV DNA replication mechanisms.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Humanos , Animales , Virus de la Fiebre Porcina Africana/genética , Conformación Proteica , ADN Polimerasa Dirigida por ADN/química , ADN Viral/genética
14.
J Biol Chem ; 299(3): 102938, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702254

RESUMEN

DNA polymerases catalyze DNA synthesis with high efficiency, which is essential for all life. Extensive kinetic and structural efforts have been executed in exploring mechanisms of DNA polymerases, surrounding their kinetic pathway, catalytic mechanisms, and factors that dictate polymerase fidelity. Recent time-resolved crystallography studies on DNA polymerase η (Pol η) and ß have revealed essential transient events during the DNA synthesis reaction, such as mechanisms of primer deprotonation, separated roles of the three metal ions, and conformational changes that disfavor incorporation of the incorrect substrate. DNA-embedded ribonucleotides (rNs) are the most common lesion on DNA and a major threat to genome integrity. While kinetics of rN incorporation has been explored and structural studies have revealed that DNA polymerases have a steric gate that destabilizes ribonucleotide triphosphate binding, the mechanism of extension upon rN addition remains poorly characterized. Using steady-state kinetics, static and time-resolved X-ray crystallography with Pol η as a model system, we showed that the extra hydroxyl group on the primer terminus does alter the dynamics of the polymerase active site as well as the catalysis and fidelity of DNA synthesis. During rN extension, Pol η error incorporation efficiency increases significantly across different sequence contexts. Finally, our systematic structural studies suggest that the rN at the primer end improves primer alignment and reduces barriers in C2'-endo to C3'-endo sugar conformational change. Overall, our work provides further mechanistic insights into the effects of rN incorporation on DNA synthesis.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Ribonucleótidos , Dominio Catalítico , ADN/biosíntesis , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Cinética , Ribonucleótidos/metabolismo , Conformación Proteica , Humanos , ADN Polimerasa theta
15.
Plant Mol Biol ; 114(1): 3, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217735

RESUMEN

Base excision repair (BER) generates gapped DNA intermediates containing a 5'-terminal 2-deoxyribose-5-phosphate (5'-dRP) group. In mammalian cells, gap filling and dRP removal are catalyzed by Pol ß, which belongs to the X family of DNA polymerases. In higher plants, the only member of the X family of DNA polymerases is Pol λ. Although it is generally believed that plant Pol λ participates in BER, there is limited experimental evidence for this hypothesis. Here we have characterized the biochemical properties of Arabidopsis thaliana Pol λ (AtPol λ) in a BER context, using a variety of DNA repair intermediates. We have found that AtPol λ performs gap filling inserting the correct nucleotide, and that the rate of nucleotide incorporation is higher in substrates containing a C in the template strand. Gap filling catalyzed by AtPol λ is most efficient with a phosphate at the 5'-end of the gap and is not inhibited by the presence of a 5'-dRP mimic. We also show that AtPol λ possesses an intrinsic dRP lyase activity that is reduced by mutations at two lysine residues in its 8-kDa domain, one of which is present in Pol λ exclusively and not in any Pol ß homolog. Importantly, we also found that the dRP lyase activity of AtPol λ allows efficient completion of uracil repair in a reconstituted short-patch BER reaction. These results suggest that AtPol λ plays an important role in plant BER.


Asunto(s)
Arabidopsis , ADN Polimerasa beta , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Reparación por Escisión , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Reparación del ADN , Nucleótidos , Fosfatos , Mamíferos/metabolismo
16.
J Org Chem ; 89(11): 7680-7691, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38739842

RESUMEN

Safrole is a natural product present in many plants and plant products, including spices and essential oils. During cellular metabolism, it converts to a highly reactive trans-isosafrole (SF) intermediate that reacts with genomic DNA and forms N2-SF-dG and N6-SF-dA DNA adducts, which are detected in the oral tissue of cancer patients with betel quid chewing history. To study the SF-induced carcinogenesis and to probe the role of low fidelity translesion synthesis (TLS) polymerases in bypassing SF adducts, herein, we report the synthesis of N2-SF-dG modified DNAs using phosphoramidite chemistry. The N2-SF-dG modification in the duplex DNA does not affect the thermal stability and retains the B-form of helical conformation, indicating that this adduct may escape the radar of common DNA repair mechanisms. Primer extension studies showed that the N2-SF-dG adduct is bypassed by human TLS polymerases hpolκ and hpolη, which perform error-free replication across this adduct. Furthermore, molecular modeling and dynamics studies revealed that the adduct reorients to pair with the incoming nucleotide, thus allowing the effective bypass. Overall, the results indicate that hpolκ and hpolη do not distinguish the N2-SF-dG adduct, suggesting that they may not be involved in the safrole-induced carcinogenicity.


Asunto(s)
Aductos de ADN , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Humanos , Aductos de ADN/química , Aductos de ADN/metabolismo , Aductos de ADN/síntesis química , Safrol/química , Safrol/análogos & derivados , ADN/química , ADN/metabolismo , Estructura Molecular
17.
Analyst ; 149(10): 3026-3033, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38618891

RESUMEN

Alkaline phosphatase (ALP) is a class of hydrolase that catalyzes the dephosphorylation of phosphorylated species in biological tissues, playing an important role in many physiological and pathological processes. Sensitive imaging of ALP activity in living cells is contributory to the research on these processes. Herein, we propose an acid-responsive DNA hydrogel to deliver a cascaded enzymatic nucleic acid amplification system into cells for the sensitive imaging of intracellular ALP activity. The DNA hydrogel is formed by two kinds of Y-shaped DNA monomers and acid-responsive cytosine-rich linkers. The amplification system contained Bst DNA polymerase (Bst DP), Nt.BbvCI endonuclease, a Recognition Probe (RP, containing a DNAzyme sequence, a Nt.BbvCI recognition sequence, and a phosphate group at the 3'-end), and a Signal Probe (SP, containing a cleavage site for DNAzyme, Cy3 and BHQ2 at the two ends). The amplification system was trapped into the DNA hydrogel and taken up by cells, and the cytosine-rich linkers folded into a quadruplex i-motif in the acidic lysosomes, leading to the collapse of the hydrogel and releasing the amplification system. The phosphate groups on RPs were recognized and removed by the target ALP, triggering a polymerization-nicking cycle to produce large numbers of DNAzyme sequences, which then cleaved multiple SPs, restoring Cy3 fluorescence to indicate the ALP activity. This strategy achieved sensitive imaging of ALP in living HeLa, MCF-7, and NCM460 cells, and realized the sensitive detection of ALP in vitro with a detection limit of 2.0 × 10-5 U mL-1, providing a potential tool for the research of ALP-related physiological and pathological processes.


Asunto(s)
Fosfatasa Alcalina , ADN Catalítico , ADN , Técnicas de Amplificación de Ácido Nucleico , Humanos , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/química , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN/química , ADN/genética , ADN Catalítico/química , ADN Catalítico/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Límite de Detección , Concentración de Iones de Hidrógeno , Hidrogeles/química , Células HeLa
18.
J Chem Inf Model ; 64(10): 4231-4249, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38717969

RESUMEN

Human DNA polymerases are vital for genetic information management. Their function involves catalyzing the synthesis of DNA strands with unparalleled accuracy, which ensures the fidelity and stability of the human genomic blueprint. Several disease-associated mutations and their functional impact on DNA polymerases have been reported. One particular polymerase, human DNA polymerase kappa (Pol κ), has been reported to be susceptible to several cancer-associated mutations. The Y432S mutation in Pol κ, associated with various cancers, is of interest due to its impact on polymerization activity and markedly reduced thermal stability. Here, we have used computational simulations to investigate the functional consequences of the Y432S using classical molecular dynamics (MD) and coupled quantum mechanics/molecular mechanics (QM/MM) methods. Our findings suggest that Y432S induces structural alterations in domains responsible for nucleotide addition and ternary complex stabilization while retaining structural features consistent with possible catalysis in the active site. Calculations of the minimum energy path associated with the reaction mechanism of the wild type (WT) and Y432S Pol κ indicate that, while both enzymes are catalytically competent (in terms of energetics and the active site's geometries), the cancer mutation results in an endoergic reaction and an increase in the catalytic barrier. Interactions with a third magnesium ion and environmental effects on nonbonded interactions, particularly involving key residues, contribute to the kinetic and thermodynamic distinctions between the WT and mutant during the catalytic reaction. The energetics and electronic findings suggest that active site residues favor the catalytic reaction with dCTP3- over dCTP4-.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Simulación de Dinámica Molecular , Neoplasias , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Teoría Cuántica , Mutación , Termodinámica , Dominio Catalítico , Conformación Proteica
19.
Cell ; 139(2): 231-3, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837028

RESUMEN

In this issue, Lee et al. (2009) present a crystal structure of the human mitochondrial DNA polymerase (POLgamma). The structure of this heterotrimeric enzyme lays a foundation for understanding how POLgamma mutations cause human mitochondrial disease and why some antiviral nucleoside analogs cause cellular toxicity.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa gamma , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo
20.
Cell ; 139(2): 312-24, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837034

RESUMEN

Human mitochondrial DNA polymerase (Pol gamma) is the sole replicase in mitochondria. Pol gamma is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol gamma holoenzyme and, separately, a variant of its processivity factor, Pol gammaB. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol gammaA interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol gamma structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN Polimerasa gamma , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA