Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 607(7920): 816-822, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831507

RESUMEN

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.


Asunto(s)
Aciltransferasas , Proteínas de la Membrana , Vía de Señalización Wnt , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Antineoplásicos , Sitios de Unión , Coenzima A/metabolismo , Microscopía por Crioelectrón , Histidina , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Palmitoil Coenzima A , Pirazinas/farmacología , Piridinas/farmacología , Serina , Especificidad por Sustrato , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt3A
2.
J Biol Chem ; 298(10): 102469, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087837

RESUMEN

Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain-containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving "autoacylation" of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.


Asunto(s)
Aciltransferasas , Cisteína , Descubrimiento de Drogas , Humanos , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Cisteína/metabolismo , Lipoilación , Dedos de Zinc
3.
J Biol Chem ; 296: 100297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460647

RESUMEN

The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.


Asunto(s)
Glucemia/metabolismo , Células Secretoras de Glucagón/enzimología , Glucagón/biosíntesis , N-Acetilglucosaminiltransferasas/genética , Obesidad/genética , Acilación/efectos de los fármacos , Animales , Ayuno/metabolismo , Femenino , Efecto Fundador , Glucagón/deficiencia , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/patología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Prueba de Tolerancia a la Glucosa , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Resistencia a la Insulina , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/deficiencia , Obesidad/enzimología , Obesidad/patología , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología
4.
Trends Biochem Sci ; 42(7): 566-581, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28602500

RESUMEN

Post-translational attachment of lipids to proteins is found in all organisms, and is important for many biological processes. Acylation with myristic and palmitic acids are among the most common lipid modifications, and understanding reversible protein palmitoylation dynamics has become a particularly important goal. Linking acyltransferase enzymes to disease states can be challenging due to a paucity of robust models, compounded by functional redundancy between many palmitoyl transferases; however, in cases such as Wnt or Hedgehog signalling, small molecule inhibitors have been identified, with some progressing to clinical trials. In this review, we present recent developments in our understanding of protein acylation in human health and disease through use of chemical tools, global profiling of acylated proteomes, and functional studies of specific protein targets.


Asunto(s)
Preparaciones Farmacéuticas , Proteínas/química , Proteínas/metabolismo , Acilación/efectos de los fármacos , Humanos
5.
Mol Pharmacol ; 100(4): 319-334, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34315812

RESUMEN

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor and mainstay therapeutic target for the treatment of type 2 diabetes and obesity. Recent reports have highlighted how biased agonism at the GLP-1R affects sustained glucose-stimulated insulin secretion through avoidance of desensitization and downregulation. A number of GLP-1R agonists (GLP-1RAs) feature a fatty acid moiety to prolong their pharmacokinetics via increased albumin binding, but the potential for these chemical changes to influence GLP-1R function has rarely been investigated beyond potency assessments for cAMP. Here, we directly compare the prototypical GLP-1RA exendin-4 with its C-terminally acylated analog, exendin-4-C16. We examine relative propensities of each ligand to recruit and activate G proteins and ß-arrestins, endocytic and postendocytic trafficking profiles, and interactions with model and cellular membranes in HEK293 and HEK293T cells. Both ligands had similar cAMP potency, but exendin-4-C16 showed ∼2.5-fold bias toward G protein recruitment and a ∼60% reduction in ß-arrestin-2 recruitment efficacy compared with exendin-4, as well as reduced GLP-1R endocytosis and preferential targeting toward recycling pathways. These effects were associated with reduced movement of the GLP-1R extracellular domain measured using a conformational biosensor approach and a ∼70% increase in insulin secretion in INS-1 832/3 cells. Interactions with plasma membrane lipids were enhanced by the acyl chain. Exendin-4-C16 showed extensive albumin binding and was highly effective for lowering of blood glucose in mice over at least 72 hours. Our study highlights the importance of a broad approach to the evaluation of GLP-1RA pharmacology. SIGNIFICANCE STATEMENT: Acylation is a common strategy to enhance the pharmacokinetics of peptide-based drugs. This work shows how acylation can also affect various other pharmacological parameters, including biased agonism, receptor trafficking, and interactions with the plasma membrane, which may be therapeutically important.


Asunto(s)
Exenatida/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Incretinas/metabolismo , Transducción de Señal/fisiología , Acilación/efectos de los fármacos , Acilación/fisiología , Animales , Exenatida/farmacología , Células HEK293 , Humanos , Incretinas/farmacología , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Transducción de Señal/efectos de los fármacos
6.
J Biol Chem ; 295(14): 4488-4497, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071081

RESUMEN

The ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is S-acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins. However, whether S-acylation affects ASBT function and membrane expression has not been determined. Using the acyl resin-assisted capture method, we found that the majority of ASBT (∼80%) was S-acylated in ileal brush border membrane vesicles from human organ donors, as well as in HEK293 cells stably transfected with ASBT (2BT cells). Metabolic labeling with alkyne-palmitic acid (100 µm for 15 h) also showed that ASBT is S-acylated in 2BT cells. Incubation with the acyltransferase inhibitor 2-bromopalmitate (25 µm for 15 h) significantly reduced ASBT S-acylation, function, and levels on the plasma membrane. Treatment of 2BT cells with saturated palmitic acid (100 µm for 15 h) increased ASBT function, whereas treatment with unsaturated oleic acid significantly reduced ASBT function. Metabolic labeling with alkyne-oleic acid (100 µm for 15 h) revealed that oleic acid attaches to ASBT, suggesting that unsaturated fatty acids may decrease ASBT's function via a direct covalent interaction with ASBT. We also identified Cys-314 as a potential S-acylation site. In conclusion, these results provide evidence that S-acylation is involved in the modulation of ASBT function. These findings underscore the potential for unsaturated fatty acids to reduce ASBT function, which may be useful in disorders in which bile acid toxicity is implicated.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Acilación/efectos de los fármacos , Aciltransferasas/metabolismo , Alquinos/química , Ácidos y Sales Biliares/metabolismo , Membrana Celular/metabolismo , Cisteína/química , Cisteína/metabolismo , Células HEK293 , Humanos , Íleon/metabolismo , Ácido Oléico/química , Ácido Oléico/farmacología , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Palmitatos/química , Palmitatos/farmacología , Simportadores/genética
7.
Pharmacol Res ; 165: 105467, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33515704

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked ß-N-acetylglucosamine transferase (OGT) and O-linked ß-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.


Asunto(s)
Fármacos Cardiovasculares/administración & dosificación , Enfermedades Cardiovasculares/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Inhibidores Enzimáticos/administración & dosificación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Acetilglucosamina/antagonistas & inhibidores , Acetilglucosamina/metabolismo , Acetilglucosaminidasa/antagonistas & inhibidores , Acetilglucosaminidasa/metabolismo , Acilación/efectos de los fármacos , Acilación/fisiología , Animales , Antígenos de Neoplasias/metabolismo , Enfermedades Cardiovasculares/metabolismo , Glicosilación/efectos de los fármacos , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/metabolismo , Humanos , Hialuronoglucosaminidasa/antagonistas & inhibidores , Hialuronoglucosaminidasa/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/metabolismo
8.
J Biol Chem ; 294(22): 8973-8990, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31010828

RESUMEN

Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.


Asunto(s)
Ácidos Grasos/biosíntesis , Interleucina-17/metabolismo , Células Th17/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acilación/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Ácidos Grasos/análisis , Femenino , Humanos , Interleucina-17/genética , Lipidómica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Obesidad/metabolismo , Obesidad/patología , Regiones Promotoras Genéticas , Unión Proteica , Piranos/farmacología , Células Th17/citología , Tiazoles/farmacología , Activación Transcripcional/efectos de los fármacos
9.
Methods ; 167: 105-116, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009771

RESUMEN

RNA is a regulator and catalyst of many cellular processes. Efforts to therapeutically harness RNA began with the discovery of myriad coding and non-coding RNAs and their versatile modes of action. However, due to its dynamic structure and the polar and repetitive nature of its surface, RNA presents a challenging target for drug design. For an RNA to be druggable, it must contain a motif that assumes a nearly fixed and unique conformation that a small molecule can recognize and bind consistently and with high affinity. Hence, reliable methods for determining the secondary and tertiary structures of RNA, and even the features and occupancy of potential drug binding sites are of utmost importance for the effective design of RNA-based therapeutics. Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) has emerged as such a method, by which RNA secondary structure can be probed at single-nucleotide resolution, under a variety of conditions, and in the presence of RNA-specific small-molecule ligands. In this review, we describe an in-depth protocol for using SHAPE-MaP to characterize RNA-small molecule interactions in cell culture (in cellulo). This method can be applied to transcripts of any size or abundance, and to determine the sites and affinities of small molecule binding, making it an essential and versatile tool for drug discovery.


Asunto(s)
Conformación de Ácido Nucleico/efectos de los fármacos , ARN/química , Análisis de Secuencia de ARN/métodos , Bibliotecas de Moléculas Pequeñas/química , Acilación/efectos de los fármacos , Humanos , Ligandos , ARN/efectos de los fármacos , ARN/ultraestructura , Bibliotecas de Moléculas Pequeñas/farmacología
10.
Cell Mol Biol Lett ; 25: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174982

RESUMEN

BACKGROUND: High levels of the post-translational modification O-GlcNAcylation (O-GlcNAc) are found in multiple cancers, including bladder cancer. Autophagy, which can be induced by stress from post-translational modifications, plays a critical role in maintaining cellular homeostasis and regulating tumorigenesis. The impact of O-GlcNAcylation on autophagy in bladder cancer remains unclear. Here, we evaluate the change in autophagic activity in response to O-GlcNAcylation and explore the potential mechanisms. METHODS: O-GlcNAcylation levels in bladder cancer cells were altered through pharmacological or genetic manipulations: treating with 6-diazo-5-oxo-norleucine (DON) or thiamet-G (TG) or up- and downregulation of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA). Autophagy was determined using fluorescence microscopy and western blotting. Co-immunoprecipitation (Co-IP) assays were performed to evaluate whether the autophagy regulator AMP-activated protein kinase (AMPK) was O-GlcNAc modified. RESULTS: Cellular autophagic flux was strikingly enhanced as a result of O-GlcNAcylation suppression, whereas it decreased at high O-GlcNAcylation levels. Phosphorylation of AMPK increased after the suppression of O-GlcNAcylation. We found that O-GlcNAcylation of AMPK suppressed the activity of this regulator, thereby inhibiting ULK1 activity and autophagy. CONCLUSION: We characterized a new function of O-GlcNAcylation in the suppression of autophagy via regulation of AMPK. GRAPHICAL ABSTRACT: Blockage of O-linked GlcNAcylation induces AMPK dependent autophagy in bladder cancer cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Acilación/efectos de los fármacos , Acilación/genética , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Compuestos Azo/farmacología , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , N-Acetilglucosaminiltransferasas/genética , Norleucina/análogos & derivados , Norleucina/farmacología , Fosforilación , Procesamiento Proteico-Postraduccional/genética , Piranos/farmacología , ARN Interferente Pequeño , Tiazoles/farmacología , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/genética , beta-N-Acetilhexosaminidasas/genética
11.
J Proteome Res ; 18(4): 1513-1531, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30644754

RESUMEN

Mitochondrial dysfunction is one of many key factors in the etiology of alcoholic liver disease (ALD). Lysine acetylation is known to regulate numerous mitochondrial metabolic pathways, and recent reports demonstrate that alcohol-induced protein acylation negatively impacts these processes. To identify regulatory mechanisms attributed to alcohol-induced protein post-translational modifications, we employed a model of alcohol consumption within the context of wild type (WT), sirtuin 3 knockout (SIRT3 KO), and sirtuin 5 knockout (SIRT5 KO) mice to manipulate hepatic mitochondrial protein acylation. Mitochondrial fractions were examined by label-free quantitative HPLC-MS/MS to reveal competition between lysine acetylation and succinylation. A class of proteins defined as "differential acyl switching proteins" demonstrate select sensitivity to alcohol-induced protein acylation. A number of these proteins reveal saturated lysine-site occupancy, suggesting a significant level of differential stoichiometry in the setting of ethanol consumption. We hypothesize that ethanol downregulates numerous mitochondrial metabolic pathways through differential acyl switching proteins. Data are available via ProteomeXchange with identifier PXD012089.


Asunto(s)
Acilación/efectos de los fármacos , Etanol/farmacología , Mitocondrias , Proteoma , Animales , Hepatopatías Alcohólicas/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteoma/química , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
12.
J Biol Chem ; 293(8): 2755-2769, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29301937

RESUMEN

An increasing prevalence of cases of drug-resistant tuberculosis requires the development of more efficacious chemotherapies. We previously reported the discovery of a new class of cyclipostins and cyclophostin (CyC) analogs exhibiting potent activity against Mycobacterium tuberculosis both in vitro and in infected macrophages. Competitive labeling/enrichment assays combined with MS have identified several serine or cysteine enzymes in lipid and cell wall metabolism as putative targets of these CyC compounds. These targets included members of the antigen 85 (Ag85) complex (i.e. Ag85A, Ag85B, and Ag85C), responsible for biosynthesis of trehalose dimycolate and mycolylation of arabinogalactan. Herein, we used biochemical and structural approaches to validate the Ag85 complex as a pharmacological target of the CyC analogs. We found that CyC7ß, CyC8ß, and CyC17 bind covalently to the catalytic Ser124 residue in Ag85C; inhibit mycolyltransferase activity (i.e. the transfer of a fatty acid molecule onto trehalose); and reduce triacylglycerol synthase activity, a property previously attributed to Ag85A. Supporting these results, an X-ray structure of Ag85C in complex with CyC8ß disclosed that this inhibitor occupies Ag85C's substrate-binding pocket. Importantly, metabolic labeling of M. tuberculosis cultures revealed that the CyC compounds impair both trehalose dimycolate synthesis and mycolylation of arabinogalactan. Overall, our study provides compelling evidence that CyC analogs can inhibit the activity of the Ag85 complex in vitro and in mycobacteria, opening the door to a new strategy for inhibiting Ag85. The high-resolution crystal structure obtained will further guide the rational optimization of new CyC scaffolds with greater specificity and potency against M. tuberculosis.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos Organofosforados/farmacología , Acilación/efectos de los fármacos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Sustitución de Aminoácidos , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Antituberculosos/química , Antituberculosos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ligandos , Viabilidad Microbiana/efectos de los fármacos , Conformación Molecular , Mutación , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Serina/química
13.
J Biol Chem ; 293(10): 3593-3606, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29352103

RESUMEN

Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Interestingly, metabolic labeling studies showed incorporation of [3H]palmitate into the t-SNAREs increased although the protein levels were unchanged, suggesting that acylation turns over on the two t-SNAREs in resting platelets. Exogenously added fatty acids did compete with [3H]palmitate for t-SNARE labeling. To determine the effects of acylation, we measured aggregation, ADP/ATP release, as well as P-selectin exposure in platelets treated with the acyltransferase inhibitor cerulenin or the thioesterase inhibitor palmostatin B. We found that cerulenin pretreatment inhibited t-SNARE acylation and platelet function in a dose- and time-dependent manner whereas palmostatin B had no detectable effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin, suggesting that maintaining the acylation state is important for platelet function. Thus, our work shows that t-SNARE acylation is actively cycling in platelets and suggests that the enzymes regulating protein acylation could be potential targets to control platelet exocytosis in vivo.


Asunto(s)
Plaquetas/metabolismo , Cisteína/metabolismo , Exocitosis , Procesamiento Proteico-Postraduccional , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Cisteína/química , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Humanos , Hidroxilamina/farmacología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Oxidación-Reducción , Selectina-P/metabolismo , Ácido Palmítico/metabolismo , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Qa-SNARE/química , Proteínas Qb-SNARE/química , Proteínas Qc-SNARE/química , Sustancias Reductoras/farmacología , Propiedades de Superficie/efectos de los fármacos , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/metabolismo , Tritio
14.
Artículo en Inglés | MEDLINE | ID: mdl-31182530

RESUMEN

Carbapenem-resistant Enterobacteriaceae (CRE) are resistant to most antibiotics, making CRE infections extremely difficult to treat with available agents. Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) are predominant carbapenemases in CRE in the United States. Nacubactam is a bridged diazabicyclooctane (DBO) ß-lactamase inhibitor that inactivates class A and C ß-lactamases and exhibits intrinsic antibiotic and ß-lactam "enhancer" activity against Enterobacteriaceae In this study, we examined a collection of meropenem-resistant K. pneumoniae isolates carrying blaKPC-2 or blaKPC-3; meropenem-nacubactam restored susceptibility. Upon testing isogenic Escherichia coli strains producing KPC-2 variants with single-residue substitutions at important Ambler class A positions (K73, S130, R164, E166, N170, D179, K234, E276, etc.), the K234R variant increased the meropenem-nacubactam MIC compared to that for the strain producing KPC-2, without increasing the meropenem MIC. Correspondingly, nacubactam inhibited KPC-2 (apparent Ki [Ki app] = 31 ± 3 µM) more efficiently than the K234R variant (Ki app = 270 ± 27 µM) and displayed a faster acylation rate (k2/K), which was 5,815 ± 582 M-1 s-1 for KPC-2 versus 247 ± 25 M-1 s-1 for the K234R variant. Unlike avibactam, timed mass spectrometry revealed an intact sulfate on nacubactam and a novel peak (+337 Da) with the K234R variant. Molecular modeling of the K234R variant showed significant catalytic residue (i.e., S70, K73, and S130) rearrangements that likely interfere with nacubactam binding and acylation. Nacubactam's aminoethoxy tail formed unproductive interactions with the K234R variant's active site. Molecular modeling and docking observations were consistent with the results of biochemical analyses. Overall, the meropenem-nacubactam combination is effective against carbapenem-resistant K. pneumoniae Moreover, our data suggest that ß-lactamase inhibition by nacubactam proceeds through an alternative mechanism compared to that for avibactam.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Meropenem/farmacología , beta-Lactamasas/metabolismo , Acilación/efectos de los fármacos , Compuestos de Azabiciclo/farmacología , Carbapenémicos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Inhibidores de beta-Lactamasas/farmacología
15.
Mol Cell Proteomics ; 16(7): 1324-1334, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450421

RESUMEN

Type 2 diabetes (T2D) is a major chronic healthcare concern worldwide. Emerging evidence suggests that a histone-modification-mediated epigenetic mechanism underlies T2D. Nevertheless, the dynamics of histone marks in T2D have not yet been carefully analyzed. Using a mass spectrometry-based label-free and chemical stable isotope labeling quantitative proteomic approach, we systematically profiled liver histone post-translational modifications (PTMs) in a prediabetic high-fat diet-induced obese (DIO) mouse model. We identified 170 histone marks, 30 of which were previously unknown. Interestingly, about 30% of the histone marks identified in DIO mouse liver belonged to a set of recently reported lysine acylation modifications, including propionylation, butyrylation, malonylation, and succinylation, suggesting possible roles of these newly identified histone acylations in diabetes and obesity. These histone marks were detected without prior affinity enrichment with an antibody, demonstrating that the histone acylation marks are present at reasonably high stoichiometry. Fifteen histone marks differed in abundance in DIO mouse liver compared with liver from chow-fed mice in label-free quantification, and six histone marks in stable isotope labeling quantification. Analysis of hepatic histone modifications from metformin-treated DIO mice revealed that metformin, a drug widely used for T2D, could reverse DIO-stimulated histone H3K36me2 in prediabetes, suggesting that this mark is likely associated with T2D development. Our study thus offers a comprehensive landscape of histone marks in a prediabetic mouse model, provides a resource for studying epigenetic functions of histone modifications in obesity and T2D, and suggest a new epigenetic mechanism for the physiological function of metformin.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Histonas/metabolismo , Hígado/metabolismo , Obesidad/inducido químicamente , Proteómica/métodos , Acilación/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Código de Histonas , Histonas/efectos de los fármacos , Marcaje Isotópico , Espectrometría de Masas , Metformina/farmacología , Ratones , Ratones Obesos , Obesidad/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos
16.
Int J Mol Sci ; 20(24)2019 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-31847420

RESUMEN

An acylated flavonol glycoside, helichrysoside, at a dose of 10 mg/kg/day per os for 14 days, improved the glucose tolerance in mice without affecting the food intake, visceral fat weight, liver weight, and other plasma parameters. In this study, using hepatoblastoma-derived HepG2 cells, helichrysoside, trans-tiliroside, and kaempferol 3-O-ß-D-glucopyranoside enhanced glucose consumption from the medium, but their aglycones and p-coumaric acid did not show this activity. In addition, several acylated flavonol glycosides were synthesized to clarify the structural requirements for lipid metabolism using HepG2 cells. The results showed that helichrysoside and related analogs significantly inhibited triglyceride (TG) accumulation in these cells. The inhibition by helichrysoside was more potent than that by other acylated flavonol glycosides, related flavonol glycosides, and organic acids. As for the TG metabolism-promoting activity in high glucose-pretreated HepG2 cells, helichrysoside, related analogs, and their aglycones were found to significantly reduce the TG contents in HepG2 cells. However, the desacyl flavonol glycosides and organic acids derived from the acyl groups did not exhibit an inhibitory impact on the TG contents in HepG2 cells. These results suggest that the existence of the acyl moiety at the 6'' position in the D-glucopyranosyl part is essential for glucose and lipid metabolism-promoting activities.


Asunto(s)
Catecoles/farmacología , Cromonas/farmacología , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Acilación/efectos de los fármacos , Animales , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoles/farmacología , Glicósidos/farmacología , Células Hep G2 , Humanos , Quempferoles/farmacología , Masculino , Ratones , Extractos Vegetales/farmacología , Relación Estructura-Actividad
17.
J Biol Chem ; 292(45): 18422-18433, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28939770

RESUMEN

Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression.


Asunto(s)
Antineoplásicos/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Acilación/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Antineoplásicos/farmacología , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones SCID , Mutación , Ácido Mirístico/metabolismo , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/etiología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas pp60(c-src)/química , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Interferencia de ARN , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
18.
J Biol Chem ; 292(33): 13507-13513, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28655768

RESUMEN

Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O-acyl transferase family.


Asunto(s)
Aciltransferasas/metabolismo , Hipoplasia Dérmica Focal/genética , Proteínas de la Membrana/metabolismo , Mutación Puntual , Procesamiento Proteico-Postraduccional , Proteína Wnt3A/metabolismo , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/química , Aciltransferasas/genética , Sustitución de Aminoácidos , Animales , Cistina/química , Cistina/metabolismo , Inhibidores Enzimáticos/farmacología , Hipoplasia Dérmica Focal/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt3A/química
19.
Chembiochem ; 19(5): 496-504, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29235227

RESUMEN

Histone deacetylases regulate the acetylation levels of numerous proteins and play key roles in physiological processes and disease states. In addition to acetyl groups, deacetylases can remove other acyl modifications on lysines, the roles and regulation of which are far less understood. A peptide-based fluorescent probe for single-reagent, real-time detection of deacetylase activity that can be readily adapted for probing broader lysine deacylation, including decrotonylation, is reported. Following cleavage of the lysine modification, the probe undergoes rapid intramolecular imine formation that results in marked optical changes, thus enabling convenient detection of deacylase activity with good statistical Z' factors for both absorption and fluorescence modalities. The peptide-based design offers broader isozyme scope than that of small-molecule analogues, and is suitable for probing both metal- and nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. With an effective sirtuin activity assay in hand, it is demonstrated that iron chelation by Sirtinol, a commonly employed sirtuin inhibitor, results in an enhancement in the inhibitory activity of the compound that may affect its performance in vivo.


Asunto(s)
Pruebas de Enzimas/métodos , Colorantes Fluorescentes/metabolismo , Histona Desacetilasas/metabolismo , Lisina/metabolismo , Péptidos/metabolismo , Espectrometría de Fluorescencia/métodos , Acilación/efectos de los fármacos , Benzamidas/farmacología , Colorantes Fluorescentes/química , Histona Desacetilasas/química , Humanos , Lisina/análisis , NAD/metabolismo , Naftoles/farmacología , Péptidos/química , Sirtuinas/antagonistas & inhibidores , Sirtuinas/química , Sirtuinas/metabolismo
20.
Parasitology ; 145(2): 157-174, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28270257

RESUMEN

Infections by protozoan parasites, such as Plasmodium falciparum or Leishmania donovani, have a significant health, social and economic impact and threaten billions of people living in tropical and sub-tropical regions of developing countries worldwide. The increasing range of parasite strains resistant to frontline therapeutics makes the identification of novel drug targets and the development of corresponding inhibitors vital. Post-translational modifications (PTMs) are important modulators of biology and inhibition of protein lipidation has emerged as a promising therapeutic strategy for treatment of parasitic diseases. In this review we summarize the latest insights into protein lipidation in protozoan parasites. We discuss how recent chemical proteomic approaches have delivered the first global overviews of protein lipidation in these organisms, contributing to our understanding of the role of this PTM in critical metabolic and cellular functions. Additionally, we highlight the development of new small molecule inhibitors to target parasite acyl transferases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Leishmania donovani/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Acilación/efectos de los fármacos , Humanos , Leishmania donovani/enzimología , Leishmania donovani/metabolismo , Leishmaniasis/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteómica/métodos , Transferasas/antagonistas & inhibidores , Transferasas/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA